首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   6篇
  国内免费   1篇
测绘学   1篇
大气科学   14篇
地球物理   31篇
地质学   65篇
海洋学   6篇
天文学   4篇
综合类   1篇
自然地理   2篇
  2024年   1篇
  2023年   1篇
  2022年   3篇
  2021年   6篇
  2020年   8篇
  2019年   4篇
  2018年   6篇
  2017年   9篇
  2016年   30篇
  2015年   7篇
  2014年   8篇
  2013年   11篇
  2012年   8篇
  2011年   5篇
  2010年   1篇
  2009年   4篇
  2008年   4篇
  2007年   2篇
  2005年   2篇
  1998年   1篇
  1995年   1篇
  1991年   1篇
  1984年   1篇
排序方式: 共有124条查询结果,搜索用时 390 毫秒
31.
Land use/land cover (LU/LC) that are significant elements for the interconnection of human activities and environment monitoring can be useful to find out the deviations of saving a maintainable environment. Remote sensing is a very useful tool for the affair of land use or land cover monitoring, which can be helpful to decide the allocation of land use and land cover. Supervised classification-maximum likelihood algorithm in GIS was applied in this study to detect land use/land cover changes observed in Kan basin using multispectral satellite data obtained from Landsat 5 (TM) and 8 (OLI) for the years 2000 and 2016, respectively. The main aim of this study was to gain a quantitative understanding of land use and land cover changes in Kan basin of Tehran over the period 2000–2016. For this purpose, firstly supervised classification technique was applied to Landsat images acquired in 2000 and 2016. The Kan basin was classified into five major LU/LC classes including: Built up areas, garden, pasture, water and bare-land. Change detection analysis was performed to compare the quantities of land cover class conversions between time intervals. The results revealed both increase and decrease of the different LU/LC classes from 2000 to 2016. The results indicate that during the study period, built-up land, and pastures have increased by 0.2% (76.4 km2) and 0.3% (86.03 km2) while water, garden and bare land have decreased by 0, 0.01% (3.62 km2) and 0.4% (117.168 km2), respectively. Information obtained from change detection of LU/LC can aid in providing optimal solutions for the selection, planning, implementation and monitoring of development schemes to meet the increasing demands of human needs in land management.  相似文献   
32.
Jowshan geothermal system comprises 6 thermal springs with outlet temperatures ranging from 39.3 to 46.6°C. The thermal water of these springs is presently used for swimming and as a treatment for rheumatism, sinusitis and skin diseases. The pH value of these springs is slightly acidic to neutral and the electrical conductivities about 1500 μS/Cm. The presence of many faults in the area, the alignment of all springs along the Sirch Fault and the similar chemical and isotopic composition of all springs in combination with the hydrogeological setting and geochemistry of water samples indicate that these springs are associated with deep circulation of meteoric water. According to this heating mechanism, meteoric waters infiltrate through fault openings to depth and after heating by geothermal gradient rise to the ground surface due to the hydraulic and buoyancy forces, a mechanism which is common in the southern parts of Iran. The use of various chemical geothermometers and mineral equilibrium states suggests a range of temperature about 50–90°C for the reservoir of Jowshan geothermal system.  相似文献   
33.
In the present study, the waste coral was utilized as a source of calcium oxide for transesterification of soybean oil into biodiesel (methyl esters). Characterization results revealed that the main component of the waste coral is calcium carbonate which transformed into calcium oxide when calcined above 700 °C. The Box–Behnken design of experiment was carried out, and the results were analyzed using response surface methodology. Calcination temperature, methanol– soybean oil molar ratio and catalyst concentration were chosen as variables. The methyl ester content (wt%) was response which must be maximized. A second-order model was obtained to predict methyl ester content as a function of these variables. Each variable was placed in the three low, medium and high levels (calcination temperature of 700, 800 and 900 °C; catalyst concentration of 3, 6 and 9 wt%; methanol-to-oil ratios of 12:1, 18:1 and 24:1). The optimum conditions from the experiment were found that the calcination temperature of 900 °C, catalyst concentration of 6 wt% and methanol-to-oil ratio of 12:1. Under these conditions, methyl ester content reached to 100 wt%. The waste catalyst was capable of being reused up to 4 times without much loss in the activity.  相似文献   
34.
The main goal of this work is investigation of NADE in the cyclic universe scenario. Since, cyclic universe is explained by a phantom phase (ω<−1), it is shown when there is no interaction between matter and dark energy, ADE and NADE do not produce a phantom phase, then can not describe cyclic universe. Therefore, we study interacting models of ADE and NADE in the modified Friedmann equation. We find out that, in the high energy regime, which it is a necessary part of cyclic universe evolution, only NADE can describe this phantom phase era for cyclic universe. Considering deceleration parameter tells us that the universe has a deceleration phase after an acceleration phase, and NADE is able to produce a cyclic universe. Also it is found valuable to study generalized second law of thermodynamics. Since the loop quantum correction is taken account in high energy regime, it may not be suitable to use standard treatment of thermodynamics, so we turn our attention to the result of Li et al. (Adv. High Energy Phys. 2009: 905705, 2009), which the authors have studied thermodynamics in loop quantum gravity, and we show that which condition can satisfy generalized second law of thermodynamics.  相似文献   
35.
Earthquakes occurring in urban areas constitute an important concern for emergency management and rescue services. Emergency service location problems may be formulated in discrete space or by restricting the potential location(s) to a specified finite set of points in continuous space. We propose a Multicriteria Spatial Decision Support System to identify shelters and emergency service locations in urban evacuation planning. The proposed system has emerged as an integration of the geographical information systems (GIS) and the multicriteria Decision-Making method of Preference Ranking Organization Method for Enrichment Evaluation IV (PROMETHEE IV). This system incorporates multiple and often conflicting criteria and decision-makers’ preferences into a spatial decision model. We consider three standard structural attributes (i.e., durability density, population density, and oldness density) in the form of spatial maps to determine the zones most vulnerable to an earthquake. The information on these spatial maps is then entered into the ArcGIS software to define the relevant scores for each point with regards to the aforementioned attributes. These scores will be used to compute the preference functions in PROMETHEE IV, whose net flow outranking for each alternative will be inputted in ArcGIS to determine the zones that are most vulnerable to an earthquake. The final scores obtained are integrated into a mathematical programming model designed to find the most suitable locations for the construction of emergency service stations. We demonstrate the applicability of the proposed method and the efficacy of the procedures and algorithms in an earthquake emergency service station planning case study in the city of Tehran.  相似文献   
36.
In this study, kinetics of biological carbon, nitrogen, and phosphorous removal from a synthetic wastewater in an integrated rotating biological contactor-activated sludge system was investigated. The experimental data obtained from varying four significant independent factors viz., hydraulic retention time, chemical oxygen demand for nitrogen to phosphorus ratio, internal recirculation from aerobic to anoxic zone and disks rotating speed were used for the process kinetic modeling. In order to obtain the bioprocess kinetic coefficients, Monod, first-order and Stover?CKincannon models were employed. As a result, Monod and Stover?CKincannon models were found to be the appropriate models to describe the bioprocess in the rotating biological contactor-activated sludge system as the determination coefficient for the first-order model obtained less than 0.79. According to the Monod model, growth yield, microbial decay rate, maximum specific biomass growth rate, and half-velocity constant coefficients were found to be 0.712?g VSS/g COD, 0.008/d, 5.54/d and 55?mg COD/L, respectively. From Stover?CKincannon model, the maximum total substrate removal rate constant and half-velocity constant were determined as 15.2, 10.98, 12.05?g/L?d and 14.78, 7.11, 6.97?mg/L for chemical oxygen demand, nitrogen and phosphorus removal, respectively. The kinetic parameters determined in this study can be used to improve the design and operation of the biological contactor-activated sludge system in full scale.  相似文献   
37.
Karst systems show high spatial variability of hydraulic parameters over small distances and this makes their modeling a difficult task with several uncertainties. Interconnections of fractures have a major role on the transport of groundwater, but many of the stochastic methods in use do not have the capability to reproduce these complex structures. A methodology is presented for the quantification of tortuosity using the single normal equation simulation (SNESIM) algorithm and a groundwater flow model. A training image was produced based on the statistical parameters of fractures and then used in the simulation process. The SNESIM algorithm was used to generate 75 realizations of the four classes of fractures in a karst aquifer in Iran. The results from six dye tracing tests were used to assign hydraulic conductivity values to each class of fractures. In the next step, the MODFLOW-CFP and MODPATH codes were consecutively implemented to compute the groundwater flow paths. The 9,000 flow paths obtained from the MODPATH code were further analyzed to calculate the tortuosity factor. Finally, the hydraulic conductivity values calculated from the dye tracing experiments were refined using the actual flow paths of groundwater. The key outcomes of this research are: (1) a methodology for the quantification of tortuosity; (2) hydraulic conductivities, that are incorrectly estimated (biased low) with empirical equations that assume Darcian (laminar) flow with parallel rather than tortuous streamlines; and (3) an understanding of the scale-dependence and non-normal distributions of tortuosity.  相似文献   
38.
Inappropriate management of industrial effluents has been among major causes of water pollution and subsequent fish physiological and behavioral disorders and mortalities. This study investigated the effects of wastewater from a paper mill on immune-related gene expressions (lysozyme, tumor necrosis factor and heat shock protein 70) and hematological alterations, in juvenile rainbow trout (Oncorhynchus mykiss) during a 14-day exposure period. Following the determination of LC50, fish (135 ± 10 g body weight) were exposed to three effluent treatments: control (0), 10 and 25% of LC50, in laboratory conditions. The wastewater exposure initially increased lysozyme and tumor necrosis factor gene expression, and the expression of both genes was suppressed on the 14th day after exposure. There was a rise in heat shock protein 70 gene expression at the beginning of the experiment and then decreased to the level observed in the control group. Fish exposed to wastewater showed a significant increase in the levels of red blood cells, white blood cells and hematocrit three days following exposure, but the levels of these blood parameters significantly decreased at the end of the exposure period (P < 0.05). Our results indicated a range of immune-related gene toxicity and hematotoxicity in rainbow trout caused by the negative impacts of the industrial wastewater. Here we also discussed that poor biosecurity controls and inadequate treatments of effluents from industrial activities can lead to serious damages among wild populations.  相似文献   
39.
Semnan thermal springs with high TDS and moderate temperature are located northwest of Semnan, the northern part of Iran. The spatial and temporal variations of physicochemical characteristics of the thermal and cold springs were investigated for the recognition of origin and dominant hydrogeochemical processes. Results show that the thermal springs have the same origin, but due to different ascending flow paths and different conductive cooling mechanism, their temperatures vary. The chemical composition of thermal waters is controlled by dolomite, halite and sulfate minerals dissolution and calcite precipitation and bacterial sulfate reduction. The concentration of major and trace elements in the thermal springs does not change in wet and dry seasons notably because they are derived from old groundwater with deep circulation and high temperature. Seasonal change in the concentration of some trace elements is due to the seasonal variation of pH, Eh, temperature and dilution by shallow waters. Decreasing SO4 and carbonate saturation index and increasing Na/Cl ratios and Ca content in the dry season show dilution effect caused by the previous heavy rainfall events. The temperature of the heating reservoir based on K–Mg, chalcedony, quartz and chemical equilibrium approach was approximately estimated in the range of 60–80 °C. Hydrogeologically, a conceptual model was suggested for the thermal springs. The general groundwater flow direction is probably from the dolomite Lar Formation in Chenaran anticline toward the adjacent syncline in a confined condition, and then a thrust fault acts as a conduit and redirects the thermal water to the emerging springs at the surface.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号