首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   3篇
测绘学   2篇
大气科学   4篇
地球物理   13篇
地质学   23篇
海洋学   6篇
天文学   63篇
综合类   1篇
自然地理   4篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   7篇
  2017年   6篇
  2016年   12篇
  2015年   4篇
  2014年   19篇
  2013年   14篇
  2012年   9篇
  2011年   10篇
  2010年   7篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2001年   4篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1991年   1篇
  1985年   1篇
排序方式: 共有116条查询结果,搜索用时 31 毫秒
91.
Breakwaters provide a calm sea basin for ships and protect harbor facilities by reflecting wave energy toward the open sea area. Their performance under environmental loadings is the main concern for coastal engineers. Liquefaction susceptibility of loose sediments of seabed threatens performance of these structures. The article investigates soil liquefaction effects on the seismic performance of Iran liquefied natural gas (LNG) composite breakwater. Performance-based design method, considering both grade of the breakwater and acceptable level of damages, was selected as design philosophy. Liquefaction-induced damages to the breakwater were determined by numerical analysis. Since the obtained level of deformations did not meet allowable damages, soil improvement against liquefaction was considered. Different improvement patterns were proposed based on distribution of pore pressure ratio (ru) beneath the breakwater to control its seismic performance. This investigation revealed that the most important area for soil improvement is located near the toes of breakwater to control the slope instability and performance of the breakwater.  相似文献   
92.
Groundwater drought is a specific type of hydrological drought that concerns groundwater bodies. It may have a significant adverse effect on the socio-economic, agricultural, and environmental conditions. Investigating the effect of different climatic and anthropogenic factors on groundwater drought provides essential information for sustainable planning and management of (ground) water resources. The aim of this study is to identify the influencing factors on groundwater drought in north-western Bangladesh, to understand the forcing mechanisms. A multi-step methodology is proposed to achieve this objective. The standardised precipitation index (SPI) and reconnaissance drought index (RDI) have been used to quantify the aggregated deficit between precipitation and the evaporative demand of the atmosphere, i.e. meteorological drought. The influence of land-cover patterns on the groundwater drought has been identified by calculating spatially distributed groundwater recharge as a function of land cover. Groundwater drought is defined by a threshold method. The results show that the evapotranspiration and rainfall deficits are determining meteorological drought, which shows a direct relation with groundwater recharge deficits. Land-cover change has a small effect on groundwater recharge but does not seem to be the main cause of groundwater-level decline (depletion) in the study area. The groundwater depth and groundwater-level deficit (drought) is continuously increasing with little correlation to meteorological drought or recharge anomalies. Overexploitation of groundwater for irrigation seems to be the main cause of groundwater-level decline in the study area. Efficient irrigation management is essential to reduce the growing pressure on groundwater resources and ensure sustainable water management.  相似文献   
93.
The Muteh gold district with nine gold deposits is located in the Sanandaj-Sirjan metamorphic zone. Gold mineralization occurs in a pre-Permian complex which mainly consists of green schists, meta-volcanics, and gneiss rocks. Shear zones are the host of gold mineralization. Gold paragenesis minerals include pyrite, chalcopyrite, pyrrhotite, and secondary minerals. Pyrites occur as pre-, syn-, and post-metamorphism minerals. To determine the source of the ore-bearing fluids, fifty samples were selected for petrographical and stable isotope studies. The mean values of 12.4‰, and −42‰ for δ18O and δD isotopes, respectively, and a mean value of 7.75‰ of calculated fractionation factors for δ18O H2O, from quartz veins indicate that metamorphic host rocks are the most important source for the fluids and gold mineralization. Three generations of pyrite can be distinguished showing a wide range of δ34S. Gold mineralization is closely associated with intense hydrothermal alteration along the ductile shear zones. The characteristics of the gold mineralization in the study area are similar to those of orogenic gold deposits elsewhere. An erratum to this article can be found at  相似文献   
94.
95.
We evaluated the potential impacts of future land cover change and climate variability on hydrological processes in the Neka River basin, northern Iran. This catchment is the main source of water for the intensively cultivated area of Neka County. Hydrological simulations were conducted using the Soil and Water Assessment Tool. An ensemble of 17 CMIP5 climate models was applied to assess changes in temperature and precipitation under the moderate and high emissions scenarios. To generate the business-as-usual scenario map for year 2050 we used the Land Change Modeler. With a combined change in land cover and climate, discharge is expected to decline in all seasons except the end of autumn and winter, based on the inter-model average and various climate models, which illustrated a high degree of uncertainty in discharge projections. Land cover change had a minor influence on discharge relative to that resulting from climate change.  相似文献   
96.
Acta Geotechnica - Systematic investigation of the effects of individual particle properties, such as shape, size, surface roughness, and constituent materials stiffness, on the behavior of...  相似文献   
97.
98.
High spatial and temporal resolution of precipitation data is critical input for hydrological budget estimation and flash flood modelling. This study evaluated four methods [Bias Adjustment (BA), Simple Kriging with varying Local Means (SKlm), Kriging with External Drift (KED), and Regression Kriging (RK)] for their performances in incorporating gauge rainfall measurements into Next Generation Weather Radar (NEXRAD) multi‐sensor precipitation estimator (MPE; hourly and 4 × 4 km2). Measurements from a network of 50 gauges at the Upper Guadalupe River Basin, central Texas and MPE data for the year 2004 were used in the study. We used three evaluation coefficients percentage bias (PB), coefficient of determination (R2), and Nash–Sutcliffe efficiency (NSE) to examine the performance of the four methods for preserving regional‐ and local‐scale characteristics of observed precipitation data. The results show that the two Kriging‐based methods (SKlm and RK) are in general better than BA and KED and that the PB and NSE criteria are better than the R2 criterion in assessing the performance of the four methods. It is also worth noting that the performance of one method at regional scale may be different from its performance at local scale. Critical evaluation of the performance of different methods at local or regional scale should be conducted according to the different purposes. The results obtained in this study are expected to contribute to the development of more accurate spatial rainfall products for hydrologic budget and flash flood modelling. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
99.
Strain energy concept has been employed by the researchers for the assessment of liquefaction phenomenon which is a disastrous type of earthquake-induced failure in saturated soils. The efficiency and predictability conditions of strain energy concept for liquefaction potential assessment are investigated herein using effective stress numerical analyses. Several earthquake ground motions were introduced to the base of a calibrated numerical model using an advanced fully coupled constitutive model. Results of the numerical analyses indicate that earthquake-induced excess pore pressure is more rigorously proportional to strain energy compared with the other examined intensity measures. Subsequently, a simple relationship was derived using the results of dynamic analyses to predict cumulative strain energy density in terms of magnitude, source to site distance, and effective overburden pressure. This relationship, which tries to guarantee the predictability condition of strain energy demand, has demonstrated a successful capability in discrimination between the liquefied and non-liquefied case histories recorded after several well-known earthquakes. This study has provided a practical linkage between numerical analysis and field observations. Finally, it is concluded that although strain energy approach possesses a great conceptual efficiency in liquefaction potential assessment, its precise prediction in actual field conditions involves some difficulties.  相似文献   
100.
In this work, we report a global mapping of vector lunar magnetic field based on new method of separation of internal and external fields. The magnetic measurements collected during the lifetime of lunar prospector (LP) extended mission during 1999 were strongly disturbed by the solar wind, a period which coincided with a maximum of the 23 cycle activity. The multiscale wavelength external fields were analyzed using spherical harmonic transform. The external field determined by inversion was then removed from each magnetic field component for each half orbit. To map the vector magnetic crustal anomalies, all LP magnetometer data collected at low altitudes in the three different lunar environments: (1) geomagnetic tail, (2) solar wind, and (3) geomagnetic sheath were processed using this new approach. The results obtained using these selection criteria allow us to get a global coverage of the lunar surface by the vector magnetic field at variable spacecraft low altitudes. To validate our mapping, we have developed and applied a method based on properties of potential fields functions. This method can be used to determine both horizontal north and east components using only vertical component. The validated lunar internal magnetic measurements obtained at variable spacecraft altitudes were then continued to a common altitude of 30 km using an inverse method. This mapping confirms firstly the nature of the crustal sources of lunar magnetic field and clearly shows that the strongest concentrations of anomalies are associated with high albedo and/or located antipodal to large young basins (Orientale, Serenitatis, Imbrium, and Crisium) of age about 3.9 Ga.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号