首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   436篇
  免费   16篇
  国内免费   6篇
测绘学   52篇
大气科学   19篇
地球物理   76篇
地质学   176篇
海洋学   16篇
天文学   104篇
综合类   6篇
自然地理   9篇
  2023年   2篇
  2022年   2篇
  2021年   8篇
  2020年   6篇
  2019年   11篇
  2018年   17篇
  2017年   21篇
  2016年   32篇
  2015年   19篇
  2014年   25篇
  2013年   37篇
  2012年   32篇
  2011年   20篇
  2010年   21篇
  2009年   16篇
  2008年   18篇
  2007年   12篇
  2006年   12篇
  2005年   12篇
  2004年   4篇
  2003年   11篇
  2002年   8篇
  2001年   4篇
  2000年   4篇
  1999年   8篇
  1997年   8篇
  1996年   4篇
  1995年   8篇
  1994年   4篇
  1993年   5篇
  1992年   3篇
  1991年   3篇
  1990年   8篇
  1989年   5篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   4篇
  1984年   4篇
  1983年   2篇
  1982年   4篇
  1977年   2篇
  1974年   3篇
  1973年   4篇
  1970年   2篇
  1969年   3篇
  1968年   2篇
  1963年   1篇
  1961年   1篇
  1928年   1篇
排序方式: 共有458条查询结果,搜索用时 203 毫秒
61.
Impervious surfaces have a significant impact on urban runoff, groundwater, base flow, water quality, and climate. Increase in Anthropogenic Impervious Surfaces (AIS) for a region is a true representation of urban expansion. Monitoring of AIS in an urban region is helpful for better urban planning and resource management. Cost effective and efficient maps of AIS can be obtained for larger areas using remote sensing techniques. In the present study, extraction of AIS has been carried out using Double window Flexible Pace Search (DFPS) from a new index named as Normalized Difference Impervious Surface Index (NDAISI). NDAISI is developed by enhancing Biophysical Composition Index (BCI) in two stages using a new Modified Normalized Difference Soil Index (MNDSI). MNDSI has been developed from Band 7 and Band 8 (PAN) of Landsat 8 data. In comparison to existing impervious surface extraction methods, the new NDAISI approach is able to improve Spectral Discrimination Index (SDI) for bare soil and AIS significantly. Overall accuracy of mapping of AIS, using NDAISI approach has been found to be increased by nearly 23% when compared with existing impervious surface extraction methods.  相似文献   
62.
63.
Analysis of amplitude variation with offset is an essential step for reservoir characterization. For an accurate reservoir characterization, the amplitude obtained with an isotropic assumption of the reservoir must be corrected for the anisotropic effects. The objective is seismic anisotropic amplitude correction in an effective medium, and, to this end, values and signs of anisotropic parameter differences (Δδ and Δε) across the reflection interfaces are needed. These parameters can be identified by seismic and well log data. A new technique for anisotropic amplitude correction was developed to modify amplitude changes in seismic data in transversely isotropic media with a vertical axis of symmetry. The results show that characteristics of pre-stack seismic data, that is, amplitude variation with offset gradient, can be potentially related to the sign of anisotropic parameter differences (Δδ and Δε) between two layers of the reflection boundary. The proposed methodology is designed to attain a proper fit between modelled and observed amplitude variation with offset responses, after anisotropic correction, for all possible lithofacies at the reservoir boundary. We first estimate anisotropic parameters, that is, δ and ε, away from the wells through Backus averaging of elastic properties resulted from the first pass of isotropic pre-stack seismic inversion, on input data with no amplitude correction. Next, we estimate the anisotropic parameter differences at reflection interfaces (values and signs of Δδ and Δε). We then generate seismic angle gather data after anisotropic amplitude correction using Rüger's equation for the P-P reflection coefficient. The second pass of isotropic pre-stack seismic inversion is then performed on the amplitude-corrected data, and elastic properties are estimated. Final outcome demonstrates how introduced methodology helps to reduce the uncertainty of elastic property prediction. Pre-stack seismic inversion on amplitude-corrected seismic data results in more accurate elastic property prediction than what can be obtained from non-corrected data. Moreover, a new anisotropy attribute (ν) is presented for improvement of lithology identification.  相似文献   
64.
Geomagnetism and Aeronomy - Discrete spectra of frequencies at 8, 14, 20, 26, … Hz are generated by electromagnetic emission from lightning sources and can be regarded as excitation of AC...  相似文献   
65.
An earthquake is a natural phenomenon which is very frequent in Himalayan region in India. In southern peninsula India, the spatial occurrence of earthquake is irregular, whereas the northeastern, the north and the northwestern Himalayan parts of India are subjected to regular occurrences of earthquakes as they mark the boundary of the Eurasian and the Indian Plate. Hence, it is important to study and develop spatial model and information tool to understand the seismic phenomenon. The geoinformatic technique plays a significant role in the analysis of geodatabase to study the natural disaster and hazard assessment. The main aim of the present study is to develop geospatial model based on earthquake hazard assessment tool (EaHaAsTo) through integrated geological and geoinformatic techniques to better understand the earthquake occurrences zones. The spatial and non-spatial data were collected and integrated in a GIS to prepare geospatial databases. The thematic and quantitative databases were generated, and analysis was carried out to understand the seismic characteristics of the study area. The geospatial model was developed by integrating thematic databases and geospatial analyzed using weighted linear combination method. Finally, the GIS based on customized EaHaAsTo was developed to visualize the output of the model in qualitative and quantitative forms.  相似文献   
66.
67.
Chromites occurring in different modes have been characterized from ophiolites of Rutland Island, a part of Burma-Andaman-Java subduction complex in the Bay of Bengal. Chromite mainly occurs as massive chromitite pods in mantle ultramafic tectonite and as thin massive chromitite bands together with minor disseminations in crustal ultramafic cumulate. Other than pods chromite also appears as: (a) anhedral restitic grains, (b) strings occurring as exsolved phases and as (c) symplectitic intergrowth with orthopyroxene in mantle tectonite. The chromites occurring as massive chromitite pods and bands contain high Cr (Cr#—73 to 80). Restitic chromite grains in mantle ultramafics are high-Mg (Mg#—58), high-Al (Al2O3—34 wt.%) and intermediate-Cr (Cr#—37) chromites. The bivariant plots of TiO2 wt.% vs 100Cr#, Mg# vs Cr# and Cr-Al-Fe3+ ternary discrimination diagram show that the massive and disseminated chromites fall in the boninitic field. The (Al2O3)melt and (FeO/MgO)melt values for the massive chromitites are estimated as 10 wt.% to 11 wt.% and 0.67–1.78 respectively, corroborating a boninitic parentage. Massive chromitite on Fe2+/Fe3+ vs Al2O3 wt.% and TiO2 wt.% vs Al2O3 wt.% plots occupy mainly the field of supra-subduction zone peridotites. High-Mg olivine (Fo91?93), high-Mg orthopyroxene (En~90) and high-Cr chromites of Rutland ophiolite are all supportive of boninitic source at supra-subduction zone setting. 57Fe Mössbauer study of chromite of beach placer shows that chromites occur in partly inverse spinel structure with iron distribution as Fe3+(A)Fe2+(A)Fe2+(B) which might be a result of oxidation. The olivine-spinel geothermometry shows 650–700°C re-equilibration temperature which is much lower than near crystallization temperature (950–1,050°C) derived from orthopyroxene-clinopyroxene assemblage. At supra-subduction setting an oxidizing hydrous fluid derived from subducting slab might have a major influence during the formation of Rutland ophiolite in this part of Burma-Java subduction complex.  相似文献   
68.
We examined seismic characteristics, b value and fractal dimension of the aftershock sequence of the January 26, 2001 Bhuj earthquake (Mw 7.7) that occurred in the Kutch failed rift basin, western margin of the Stable Continental Region (SCR) of India. A total of about 2,000 events (M?≥?2.0) were recorded within two and a half months, immediately after the main shock. Some 795 events were precisely relocated by simultaneous inversion. These relocated events are used for mapping the frequency-magnitude relation (b value) and fractal correlation dimension (Dc) to understand the seismic characteristics of the aftershocks and the source zone of the main shock. The surface maps of the b value and Dc reveal two distinct tectonic arms or zones of the V-shaped aftershock area, western zone and eastern zone. The b value is relatively higher (~1.6) in the western zone compared to a lower value (~1.4) in the eastern zone. The Dc map also shows a higher value (1.2–1.35) in the western zone compared to a lower Dc (0.80–1.15) in the eastern zone; this implies a positive correlation between Dc and b value. Two cross sections, E–W and N–S, are examined. The E–W sections show similar characteristics, higher b value and higher Dc in the western zone and lower in the eastern zone with depth. The N–S sections across the fault zones, however, show unique features; it imaged both the b and Dc characteristics convincingly to identify two known faults, the Kutch Mainland fault and the South Wagad fault (SWF), one stepping over the other with a seismogenic source zone at depth (20–35?km). The source zone at depth is imaged with a relatively lower b and higher Dc at the ‘fault end’ of the SWF showing a negative correlation. These observations, corroborated with the seismic tomography as well as with the proposed geological/tectonic model, shed a new light to our understanding on seismogenesis of the largest SCR earthquake in India in the recent years.  相似文献   
69.
70.
We discuss a geographic information system (GIS)‐based methodology for rock slope instability assessment based on geometrical relationships between topographic slopes and structural discontinuities in rocks. The methodology involves (a) regionalization of point observations of orientations (azimuth and dip) of structural discontinuities in rocks in order to generate a digital structural model (DStM), (b) testing the kinematical possibility of specific modes of rock slope failures by integrating DStMs and digital elevation model (DEM)‐derived slope and aspect data and (c) computation of stability scenarios with respect to identified rock slope failure modes. We tested the methodology in an area of 90 km2 in Darjeeling Himalaya (India) and in a small portion (9 km2) within this area with higher density of field structural orientation data. The results of the study show better classification of rock slope instability in the smaller area with respect to known occurrences of deep‐seated rockslides than with respect to shallow translational rockslides, implying that structural control is more important for deep‐seated rockslides than for shallow translational rockslides. Results of scenario‐based analysis show that, in rock slopes classified to be unstable, stress‐induced rock slope instability tends to increase with increasing level of water saturation. The study demonstrates the usefulness of spatially distributed data of orientations of structural discontinuities in rocks for medium‐ to small‐scale classification of rock slope instability in mountainous terrains. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号