首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   9篇
  国内免费   6篇
测绘学   1篇
大气科学   6篇
地球物理   22篇
地质学   44篇
海洋学   13篇
天文学   25篇
综合类   5篇
自然地理   8篇
  2021年   4篇
  2020年   2篇
  2019年   5篇
  2018年   14篇
  2017年   8篇
  2016年   9篇
  2015年   5篇
  2014年   4篇
  2013年   5篇
  2012年   8篇
  2011年   4篇
  2010年   9篇
  2009年   8篇
  2008年   7篇
  2007年   5篇
  2006年   3篇
  2005年   3篇
  2004年   4篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  1999年   2篇
  1998年   3篇
  1993年   1篇
  1989年   1篇
  1985年   1篇
排序方式: 共有124条查询结果,搜索用时 750 毫秒
31.
Hydrous K-rich kimberlite-like systems are studied experimentally at 5.5–7.5 GPa and 1200–1450?°C in terms of phase relations and conditions for formation and stability of phlogopite. The starting samples are phlogopite–carbonatite–phlogopite sandwiches and harzburgite–carbonatite mixtures consisting of Ol?+?Grt?+?Cpx?+?L (±Opx), according to the previous experimental results obtained at the same PT parameters but in water-free systems. Carbonatite is represented by a K- and Ca-rich composition that may form at the top of a slab. In the presence of carbonatitic melt, phlogopite can partly melt in a peritectic reaction at 5.5 GPa and 1200–1350?°C, as well as at 6.3–7.0 GPa and 1200?°C: 2Phl?+?CaCO3 (L)?Cpx?+?Ol?+?Grt?+?K2CO3 (L)?+?2H2O (L). Synthesis of phlogopite at 5.5 GPa and 1200–1350?°C, with an initial mixture of H2O-bearing harzburgite and carbonatite, demonstrates experimentally that equilibrium in this reaction can be shifted from right to left. Therefore, phlogopite can equilibrate with ultrapotassic carbonate–silicate melts in a?≥?150?°C region between 1200 and 1350?°C at 5.5 GPa. On the other hand, it can exist but cannot nucleate spontaneously and crystallize in the presence of such melts in quite a large pressure range in experiments at 6.3–7.0 GPa and 1200?°C. Thus, phlogopite can result from metasomatism of peridotite at the base of continental lithospheric mantle (CLM) by ultrapotassic carbonatite agents at depths shallower than 180–195 km, which creates a mechanism of water retaining in CLM. Kimberlite formation can begin at 5.5 GPa and 1350?°C in a phlogopite-bearing peridotite source generating a hydrous carbonate–silicate melt with 10–15 wt% SiO2, Ca# from 45 to 60, and high K enrichment. Upon further heating to 1450?°C due to the effect of a mantle plume at the CLM base, phlogopite disappears and a kimberlite-like melt forms with SiO2 to 20 wt% and Ca#?=?35–40.  相似文献   
32.
Monitoring of Xe and Kr radionuclides was conducted from August 2006 to 30 July 2008 within the framework of ISTC Project #2133. Cherepovets City in Vologda Province and St. Petersburg were chosen as monitoring locations. Kr–Xe concentrate samples were obtained as a result of processing of several thousand m3 of atmospheric air. New results of 85Kr monitoring show, that for last 15 years, the 85Kr volumetric activity in the atmospheric air of the northwest region of Russia has increased approximately 50% and has achieved a level of 1.5 Bq/m3. This value correlates well with similar data for Western Europe and Japan. The xenon fraction (80–160 cm3 under STP) is adsorbed on charcoal in the ampoule, which is measured in the well of HPGe gamma detector. Minimum detectable concentration (MDC) of 133Xe for this technique is 0.008 mBq/m3, and it is the most sensitive method used today. The 133Xe concentration in the atmospheric air of Cherepovets City varied in the monitoring period ranging from 0.09 to 2.5 mBq/m3. During the period of March 2007–30 July 2008, 133Xe activity concentration in the atmospheric air of St. Petersburg changed from background values (0.2–0.3 mBq/m3) to 185 mBq/m3 and for approximately 20% of the samples 135Xe was also measured with the 135Xe/133Xe activity ratio varied within the range of 0.03–3.5.  相似文献   
33.
Coupled hydrological and atmospheric modeling is an efficient method for snowmelt runoff forecast in large basins. We use short-range precipitation forecasts of mesoscale atmospheric Weather Research and Forecasting(WRF) model combining them with ground-based and satellite observations for modeling snow accumulation and snowmelt processes in the Votkinsk reservoir basin(184,319 km2). The method is tested during three winter seasons(2012–2015). The MODIS-based vegetation map and leaf area index data are used to calculate the snowmelt intensity and snow evaporation in the studied basin. The GIS-based snow accumulation and snowmelt modeling provides a reliable and highly detailed spatial distribution for snow water equivalent(SWE) and snow-covered areas(SCA). The modelling results are validated by comparing actual and estimated SWE and SCA data. The actual SCA results are derived from MODIS satellite data. The algorithm for assessing the SCA by MODIS data(ATBD-MOD 10) has been adapted to a forest zone. In general, the proposed method provides satisfactory results for maximum SWE calculations. The calculation accuracy is slightly degraded during snowmelt periods. The SCA data is simulated with a higher reliability than the SWE data. The differences between the simulated and actual SWE may be explained by the overestimation of the WRF-simulated total precipitation and the unrepresentativeness of the SWE measurements(snow survey).  相似文献   
34.
This paper deals with an employment of electrical resistivity imaging (ERI) for survey of leachate content on the waste disposal site in Northern Israel. The research consisted of conducting ten ERI lines and drilling investigation wells. Data simulation used a 2D EarthImager inversion program. Analysis of 2D ERI interpretation results shows that determination of the boundary between the landfill body bottom intensively saturated with leachates and underlying layers of highly water saturated fat nonconsolidated clays presents a challenge. However, statistical analysis of ERI data indicates that standard deviation and confidence interval of a set of resistivity data measured in the landfill body are significantly larger than those in underlying clays. Moreover, maximum changes of these parameters are found on the boundary between landfill body and underlying soil, thus reflecting natural differences in scattering of resistivity data measured in these two objects.  相似文献   
35.
The Crosa and Boynton (1980) empirical model for discrete mass transfer in Her X-1 is further developed. The photometric features of the light curve (peaks of an hour duration and 0.3–0.7 m amplitude, steps near orbital phase =0); and the linear polarization bursts are assumed to be due to the formation and eclipses of the plasma blobs produced by discrete transfer of matter from optical star surface and its interaction with the accretion disc rim. The long lifetime (20h) of the cold (3×104 K) blob extending up to 1011 cm above the disc plane, as well as the deep X-ray flickerings (300 s) during the X-ray absorption dips are assumed to arise from a dispersal of accreting matter by the Rayleigh-Taylor instability in a blob moving through a hot corona of the disk atT c =3×106 K andn c =3×1011 cm–3. Thermal equilibrium in the corona and in the blobs are supported by X-ray flux. Within the first few hours after its formation a blob disintegrates into drops withr=5×109 cm,T=3×104 K, andn=3×1013 cm–3 which move then along Keplerian orbits. Frictional interactions of the drops with the corona destroy them on a 20h time-scale. The proposed model makes it possible to interpret the diverse observational facts and to predict numerous observational displays in the optical, UV, and X-ray bands. The first results of our optical-spectrum observations of blobs are briefly described.  相似文献   
36.
Stormwater plumes in the southern California coastal ocean were detected by MODIS-Aqua satellite imagery and compared to ship-based data on surface salinity and fecal indicator bacterial (FIB) counts collected during the Bight'03 Regional Water Quality Program surveys in February–March of 2004 and 2005. MODIS imagery was processed using a combined near-infrared/shortwave-infrared (NIR-SWIR) atmospheric correction method, which substantially improved normalized water-leaving radiation (nLw) optical spectra in coastal waters with high turbidity. Plumes were detected using a minimum-distance supervised classification method based on nLw spectra averaged within the training areas, defined as circular zones of 1.5–5.0-km radii around field stations with a surface salinity of S < 32.0 (“plume”) and S > 33.0 (“ocean”). The plume optical signatures (i.e., the nLw differences between “plume” and “ocean”) were most evident during the first 2 days after the rainstorms. To assess the accuracy of plume detection, stations were classified into “plume” and “ocean” using two criteria: (1) “plume” included the stations with salinity below a certain threshold estimated from the maximum accuracy of plume detection; and (2) FIB counts in “plume” exceeded the California State Water Board standards. The salinity threshold between “plume” and “ocean” was estimated as 32.2. The total accuracy of plume detection in terms of surface salinity was not high (68% on average), seemingly because of imperfect correlation between plume salinity and ocean color. The accuracy of plume detection in terms of FIB exceedances was even lower (64% on average), resulting from low correlation between ocean color and bacterial contamination. Nevertheless, satellite imagery was shown to be a useful tool for the estimation of the extent of potentially polluted plumes, which was hardly achievable by direct sampling methods (in particular, because the grids of ship-based stations covered only small parts of the plumes detected via synoptic MODIS imagery). In most southern California coastal areas, the zones of bacterial contamination were much smaller than the areas of turbid plumes; an exception was the plume of the Tijuana River, where the zone of bacterial contamination was comparable with the zone of plume detected by ocean color.  相似文献   
37.
The tectonic evolution of the Rhodope massif involves Mid-Cretaceous contractional deformation and protracted Oligocene and Miocene extension. We present structural, kinematic and strain data on the Kesebir–Kardamos dome in eastern Rhodope, which document early Tertiary extension. The dome consists of three superposed crustal units bounded by a low-angle NNE-dipping detachment on its northern flank in Bulgaria. The detachment separates footwall gneiss and migmatite in a lower unit from intermediate metamorphic and overlying upper sedimentary units in the hanging wall. The high-grade metamorphic rocks of the footwall have recorded isothermal decompression. Direct juxtaposition of the sedimentary unit onto footwall rocks is due to local extensional omission of the intermediate unit. Structural analysis and deformational/metamorphic relationships give evidence for several events. The earliest event corresponds to top-to-the SSE ductile shearing within the intermediate unit, interpreted as reflecting Mid-Late Cretaceous crustal thickening and nappe stacking. Late Cretaceous–Palaeocene/Eocene late-tectonic to post-tectonic granitoids that intruded into the intermediate unit between 70 and 53 Ma constrain at least pre-latest Late Cretaceous age for the crustal-stacking event. Subsequent extension-related deformation caused pervasive mylonitisation of the footwall, with top-to-the NNE ductile, then brittle shear. Ductile flow was dominated by non-coaxial deformation, indicated by quartz c-axis fabrics, but was nearly coaxial in the dome core. Latest events relate to brittle faulting that accommodated extension at shallow crustal levels on high-angle normal faults and additional movement along strike-slip faults. Radiometric and stratigraphic constraints bracket the ductile, then brittle, extensional events at the Kesebir–Kardamos dome between 55 and 35 Ma. Extension began in Paleocene–early Eocene time and displacement on the detachment led to unroofing of the intermediate unit, which supplied material for the syn-detachment deposits in supra-detachment basin. Subsequent cooling and exhumation of the footwall unit from beneath the detachment occurred between 42 and 37 Ma as indicated by mica cooling ages in footwall rocks, and extension proceeded at brittle levels with high-angle faulting constrained at 35 Ma by the age of hydrothermal adularia crystallized in open spaces created along the faults. This was followed by Late Eocene–Oligocene post-detachment overlap successions and volcanic activity. Crustal extension described herein is contemporaneous with the closure of the Vardar Ocean to the southwest. It has accommodated an earlier hinterland-directed unroofing of the Rhodope nappe complex, and may be pre-cursor of, and/or make a transition to the Aegean back-arc extension that further contributed to its exhumation during the Late Miocene. This study underlines the importance of crustal extension at the scale of the Rhodope massif, in particular, in the eastern Rhodope region, as it recognizes an early Tertiary extension that should be considered in future tectonic models of the Rhodope and north Aegean regions.  相似文献   
38.
Permafrost and periglacial geomorphology are absent from the science curriculum in most secondary schools in the United States. This is an unfortunate situation given the recent increases in development and environmental concerns in northern latitudes and high-mountain areas, and the interesting examples of basic scientific principles found in the history of research on periglacial geomorphology and permafrost. In 1997 and 1998, a University of Delaware research group studying permafrost and periglacial geomorphology in northern Alaska participated in the National Science Foundation's (NSF) Teachers Experiencing the Antarctic and Arctic (TEA) Program. In each of these years, a high school teacher and a student traveled as part of the research team to the North Slope of Alaska. They learned about the landscape, collected active-layer thickness and temperature measurements, and assisted in data analysis. Results from studies of active-layer thickness variability and ground temperature contributed to a series of long-term observations and international research on the impacts of global climate change. Since their expeditions, the teachers have shared their experiences with their classrooms and communities in several ways, including public lectures and the Internet. Classroom activities are available to the public through the TEA web site (http://tea.rice.edu). This experience may heighten public awareness of permafrost and contribute to it becoming a useful part of the secondary curriculum.  相似文献   
39.
西天山跨乌兹别克斯坦、塔吉克斯坦、吉尔吉斯斯坦、哈萨克斯坦南部和中国新疆西天山,东西绵延2500 km,是"亚洲金腰带"核心地带,金铜铅锌矿产优势明显,中国新疆西天山金铜铅锌重大找矿发现令人期待。通过广泛深入的文献调研和较全面的地质矿产调查,论文针对重要成矿类型、成矿环境和找矿潜力的研究表明,西天山金铜铅锌成矿重要类型是造山型金矿、斑岩型金铜矿、SEDEX型和砂岩型铅锌矿等。造山型金矿形成于古生代俯冲增生和碰撞造山两类地质环境,斑岩型金铜矿形成于古生代不同时期的成熟岛弧环境,SEDEX型铅锌矿在新元古代陆缘盆地富集,砂岩型铅锌矿形成于中—新生代山前盆地。西天山金铜铅锌成矿类型和环境优越,找矿潜力巨大,新疆西天山有望实现金铜铅锌找矿持续重大突破。本文为西天山区域成矿研究和金铜铅锌找矿勘查提供了新的参考和引导。  相似文献   
40.
We performed an experimental study, designed to reproduce the formation of an unusual merwinite?+?olivine-bearing mantle assemblage recently described as a part of a Ca-rich suite of inclusions in sublithospheric diamonds, through the interaction of peridotite with an alkali-rich Ca-carbonatite melt, derived from deeply subducted oceanic crust. In the first set of experiments, we studied the reaction between powdered Mg-silicates, olivine and orthopyroxene, and a model Ca-carbonate melt (molar Na:K:Ca?=?1:1:2), in a homogeneous mixture, at 3.1 and 6.5 GPa. In these equilibration experiments, we observed the formation of a merwinite?+?olivine-bearing assemblage at 3.1 GPa and 1200 °C and at 6.5 GPa and 1300–1400 °C. The melts coexisting with this assemblage have a low Si and high Ca content (Ca#?=?molar 100?×?Ca/(Ca?+?Mg)?>?0.57). In the second set of experiments, we investigated reaction rims produced by interaction of the same Ca-carbonate melt (molar Na:K:Ca?=?1:1:2) with Mg-silicate, olivine and orthopyroxene, single crystals at 3.1 GPa and 1300 °C and at 6.5 GPa and 1400 °C. The interaction of the Ca-carbonate melt with olivine leads to merwinite formation through the expected reaction: 2Mg2SiO4 (olivine)?+?6CaCO3 (liquid)?=?Ca3MgSi2O8 (merwinite)?+?3CaMg(CO3)2 (liquid). Thus, our experiments confirm the idea that merwinite in the upper mantle may originate via interaction of peridotite with Ca-rich carbonatite melt, and that diamonds hosting merwinite may have a metasomatic origin. It is remarkable that the interaction of the Ca-carbonate melt with orthopyroxene crystals does not produce merwinite both at 3.1 and 6.5 GPa. This indicates that olivine grain boundaries are preferable for merwinite formation in the upper mantle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号