首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142篇
  免费   16篇
  国内免费   22篇
测绘学   9篇
大气科学   19篇
地球物理   63篇
地质学   39篇
海洋学   10篇
天文学   24篇
综合类   4篇
自然地理   12篇
  2023年   1篇
  2022年   2篇
  2021年   11篇
  2020年   4篇
  2019年   10篇
  2018年   19篇
  2017年   17篇
  2016年   10篇
  2015年   8篇
  2014年   9篇
  2013年   6篇
  2012年   9篇
  2011年   8篇
  2010年   18篇
  2009年   7篇
  2008年   6篇
  2007年   8篇
  2006年   3篇
  2005年   2篇
  2004年   5篇
  2003年   5篇
  2002年   4篇
  2001年   1篇
  2000年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1990年   1篇
排序方式: 共有180条查询结果,搜索用时 51 毫秒
61.
Computing effective medium properties is very important when upscaling data measured at small scale. In the presence of stratigraphic layering, seismic velocities and anisotropy parameters are scale and frequency dependent. For a porous layer permeated by aligned fractures, wave-induced fluid flow between pores and fractures can also cause significant dispersion in velocities and anisotropy parameters. In this study, we compare the dispersion of anisotropy parameters due to fracturing and layering at low frequencies. We consider a two-layer model consisting of an elastic shale layer and an anelastic sand layer. Using Chapman's theory, we introduce anisotropy parameters dispersion due to fractures (meso-scale) in the sand layer. This intrinsic dispersion is added to anisotropy parameters dispersion induced by layering (macro-scale) at low frequencies. We derive the series coefficients that control the behaviour of anisotropy parameters at low frequencies. We investigate the influences of fracture length and fracture density on fracturing effect, layering effect and combined effect versus frequency and volume fraction of sand layer. Numerical modelling results indicate that the frequency dependence due to layering is not always the dominant effect of the effective properties of the medium. The intrinsic dispersion is not negligible compared with the layering effect while evaluating the frequency-dependent properties of the layered medium.  相似文献   
62.
When a porous layer is permeated by mesoscale fractures, wave-induced fluid flow between pores and fractures can cause significant attenuation and dispersion of velocities and anisotropy parameters in the seismic frequency band. This intrinsic dispersion due to fracturing can create frequency-dependent reflection coefficients in the layered medium. In this study, we derive the frequency-dependent PP and PS reflection coefficients versus incidence angle in the fractured medium. We consider a two-layer vertical transverse isotropy model constituted by an elastic shale layer and an anelastic sand layer. Using Chapman's theory, we introduce the intrinsic dispersion due to fracturing in the sand layer. Based on the series coefficients that control the behaviour of velocity and anisotropy parameters in the fractured medium at low frequencies, we extend the conventional amplitude-versus-offset equations into frequency domain and derive frequency-dependent amplitude-versus-offset equations at the elastic–anelastic surface. Increase in fracture length or fracture density can enlarge the frequency dependence of amplitude-versus-offset attributes of PP and PS waves. Also, the frequency dependence of magnitude and phase angle of PP and PS reflection coefficients increases as fracture length or fracture density increases. Amplitude-versus-offset type of PP and PS reflection varies with fracture parameters and frequency. What is more, fracture length shows little impact on the frequency-dependent critical phase angle, while the frequency dependence of the critical phase angle increases with fracture density.  相似文献   
63.
Orthorhombic models are often used in the seismic industry nowadays to describe azimuthal and polar anisotropy and reasonably realistic in capturing the features of the earth interior. It is challenging to handle so many model parameters in the seismic data processing. In order to reduce the number of the parameters for P wave, the acoustic orthorhombic medium is proposed by setting all on-axis S wave velocities to zero. However, due to the coupled behaviour for P and S waves in the orthorhombic model, the ‘S wave artefacts’ are still remained in the acoustic orthorhombic model, which kinematics needs to be defined and analysed. In this paper, we analyse the behaviour of S wave in acoustic orthorhombic media. By analysis of the slowness surface in acoustic orthorhombic media, we define the S waves (or S wave artefacts) that are more complicated in shape comparing to the one propagating in an acoustic transversely isotropic medium with a vertical symmetry axis. The kinematic properties of these waves are defined and analysed in both phase and group domain. The caustics, amplitude and the multi-layered case for S wave in acoustic orthorhombic model are also discussed. It is shown that there are two waves propagating in this acoustic orthorhombic medium. One of these waves is similar to the one propagating in acoustic vertical symmetry axis media, whereas another one has a very complicated shape consisting of two crossing surfaces.  相似文献   
64.
Shales play an important role in many engineering applications such as nuclear waste, CO2 storage and oil or gas production. Shales are often utilized as an impermeable seal or an unconventional reservoir. For both situations, shales are often studied using seismic waves. Elastic properties of shales strongly depend on their hydration, which can lead to substantial structural changes. Thus, in order to explore shaly formations with seismic methods, it is necessary to understand the dependency of shale elastic properties on variations in hydration. In this work, we investigate structural changes in Opalinus shale at different hydration states using laboratory measurements and X-ray micro-computed tomography. We show that the shale swells with hydration and shrinks with drying with no visible damage. The pore space of the shale deforms, exhibiting a reduction in the total porosity with drying and an increase in the total porosity with hydration. We study the elastic properties of the shale at different hydration states using ultrasonic velocities measurements. The elastic moduli of the shale show substantial changes with variations in hydration, which cannot be explained with a single driving mechanism. We suggest that changes of the elastic moduli with variations in hydration are driven by multiple competing factors: (1) variations in total porosity, (2) substitution of pore-filling fluid, (3) change in stiffness of contacts between clay particles and (4) chemical hardening/softening of clay particles. We qualitatively and quantitatively analyse and discuss the influence of each of these factors on the elastic moduli. We conclude that depending on the microstructure and composition of a particular shale, some of the factors dominate over the others, resulting in different dependencies of the elastic moduli on hydration.  相似文献   
65.
A simple and accurate traveltime approximation is important in many applications in seismic data processing, inversion and modelling stages. Generalized moveout approximation is an explicit equation that approximates reflection traveltimes in general two-dimensional models. Definition of its five parameters can be done from properties of finite offset rays, for general models, or by explicit calculation from model properties, for specific models. Two versions of classical finite-offset parameterization for this approximation use traveltime and traveltime derivatives of two rays to define five parameters, which makes them asymmetrical. Using a third ray, we propose a balance between the number of rays and the order of traveltime derivatives. Our tests using different models also show the higher accuracy of the proposed method. For acoustic transversely isotropic media with a vertical symmetry axis, we calculate a new moveout approximation in the generalized moveout approximation functional form, which is explicitly defined by three independent parameters of zero-offset two-way time, normal moveout velocity and anellipticity parameter. Our test shows that the maximum error of the proposed transversely isotropic moveout approximation is about 1/6 to 1/8 of that of the moveout approximation that had been reported as the most accurate approximation in these media. The higher accuracy is the result of a novel parameterization that do not add any computational complexity. We show a simple example of its application on synthetic seismic data.  相似文献   
66.
We have relocated seismic events registered in the area of the Novaya Zemlya Archipelago, which are not identified as nuclear explosions but are probably of tectonic nature. For the relocation, we collected all available seismic bulletins and waveform data. The location was performed by applying a modified method of generalized beamforming. Verification of the modified method and selection of the travel time model were performed using data on two Novaya Zemlya nuclear explosions that occurred on 02.11.1974 and 24.10.1990. The modified method and the BARENTS travel time model provide sufficient accuracy for event location in the region. The relocation procedure was applied for 9 seismic events registered in the area of the Novaya Zemlya Archipelago. As a result, the new coordinates of the five events turned out to be significantly different from those that were defined previously.  相似文献   
67.
A flow-foliated felsic ignimbrite constitutes the uppermost lithological unit of the 1.58 Gyr anorogenic magmatic rocks in SW Finland. The ignimbrite is derived from an explosive eruption of hot (≅ 950 °C) phenocryst-bearing A-type (rapakivi-type granite magma.
The ignimbrite is close in composition to subvolcanic rapakivi granites that occur in the margins of the kand rapakivi batholith. The subvolcanic granites crystallized under a pressure of ≅ 1 kbar and at temperatures of about 650–700 °C. However, both major and rare earth elements show that the ignimbrite- forming magma was more fractionated than the magma forming the subvolcanic varieties.
Supported by evidence of mafic-felsic magma mingling, it is suggested that injection of hot mafic magma into a shallow magma chamber produced the high temperature of the ignimbrite-forming magma. This injection increased the magmatic and the volatile pressure that caused the eruption of the dry felsic magma.  相似文献   
68.
One hundred and twenty-eight strong ground motion CALTECH (Earthquakes in the U.S.A., 1940–1971) records of five Californian earthquakes, recorded at ground level and in basements, for which the modified Mercalli macroseismic intensities are known, were statistically processed to calculate 165 wave parameters. Correlation of the peak values of particle acceleration, velocity and displacement, energy, impulse and root-mean-square amplitude of the vibrations, durations of vibrations for certain levels of the peak amplitude, and spectral energies of 10 frequency windows with macroseismic intensity are discussed from the viewpoint of classification of ground-motion records.Paper presented at the 21st General Assembly of the European Seismological Commission held in Sofia 1988.  相似文献   
69.
Data collected on a cruise in January 2008, using a laser optical plankton counter, conductivity–temperature–depth sensors, and a lowered acoustic Doppler current profiler, was used to study the mesoscale distribution and advection of overwintering Calanus finmarchicus in its deep water winter habitat off the shelf of northern Norway. The overwintering animals were generally located immediately below the Atlantic Water (AW) in Arctic Intermediate Water (AIW), in the 600–1200 m depth range. The depth of the interface between AW and AIW varied considerably in the area and this was clearly reflected in the C. finmarchicus distribution. Maximum abundance varied from about 80 ind m?3 to more than 200 ind m?3 at the different stations. Current measurements showed the richness of mesoscazle eddies, with speeds exceeding 70 cm s?1 at the surface and rapidly decreasing with depth. In the main overwintering layer the eddy features were also clearly seen, but with speeds generally below 20 cm s?1. C. finmarchicus were found in the whole survey area, but they were not homogeneously distributed. Advection of the copepods resulted in relatively high local rates of change in overwintering C. finmarchicus abundance with mean value of 8% per day in the area. It is clear that mesoscale physical processes greatly contribute to the variability in the abundance of overwintering C. finmarchicus off the shelf of northern Norway. The collected data are also a valuable addition to the generally sparse datasets on the C. finmarchicus winter distribution and the role of the Lofoten basin in the large scale system is also discussed.  相似文献   
70.
Hydrate-bearing sediment cores were retrieved from recently discovered seepage sites located offshore Sakhalin Island in the Sea of Okhotsk. We obtained samples of natural gas hydrates and dissolved gas in pore water using a headspace gas method for determining their molecular and isotopic compositions. Molecular composition ratios C1/C2+ from all the seepage sites were in the range of 1,500–50,000, while δ13C and δD values of methane ranged from ?66.0 to ?63.2‰ VPDB and ?204.6 to ?196.7‰ VSMOW, respectively. These results indicate that the methane was produced by microbial reduction of CO2. δ13C values of ethane and propane (i.e., ?40.8 to ?27.4‰ VPDB and ?41.3 to ?30.6‰ VPDB, respectively) showed that small amounts of thermogenic gas were mixed with microbial methane. We also analyzed the isotopic difference between hydrate-bound and dissolved gases, and discovered that the magnitude by which the δD hydrate gas was smaller than that of dissolved gas was in the range 4.3–16.6‰, while there were no differences in δ13C values. Based on isotopic fractionation of guest gas during the formation of gas hydrate, we conclude that the current gas in the pore water is the source of the gas hydrate at the VNIIOkeangeologia and Giselle Flare sites, but not the source of the gas hydrate at the Hieroglyph and KOPRI sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号