首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   436篇
  免费   15篇
  国内免费   6篇
测绘学   52篇
大气科学   19篇
地球物理   75篇
地质学   176篇
海洋学   16篇
天文学   104篇
综合类   6篇
自然地理   9篇
  2023年   2篇
  2022年   2篇
  2021年   8篇
  2020年   6篇
  2019年   11篇
  2018年   16篇
  2017年   21篇
  2016年   32篇
  2015年   19篇
  2014年   25篇
  2013年   37篇
  2012年   32篇
  2011年   20篇
  2010年   21篇
  2009年   16篇
  2008年   18篇
  2007年   12篇
  2006年   12篇
  2005年   12篇
  2004年   4篇
  2003年   11篇
  2002年   8篇
  2001年   4篇
  2000年   4篇
  1999年   8篇
  1997年   8篇
  1996年   4篇
  1995年   8篇
  1994年   4篇
  1993年   5篇
  1992年   3篇
  1991年   3篇
  1990年   8篇
  1989年   5篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   4篇
  1984年   4篇
  1983年   2篇
  1982年   4篇
  1977年   2篇
  1974年   3篇
  1973年   4篇
  1970年   2篇
  1969年   3篇
  1968年   2篇
  1963年   1篇
  1961年   1篇
  1928年   1篇
排序方式: 共有457条查询结果,搜索用时 375 毫秒
11.
12.
It is important to identify and locate glacial lakes for assessing any potential hazard. This study presents a combination of semi-automatic method Double-Window Flexible Pace Search (DFPS) and edge detection technique to identify glacial lakes using Sentinel 2A satellite data. Initially, Normalized Difference Water Index (NDWI) has been used to identify water and non-water areas, while DFPS and Edge detection technique has been used to identify an optimum threshold value to distinguish between water and shadow areas. The optimal threshold from DFPS process is 0.21, while threshold value of gradient magnitude using edge detection process is 0.318. The number of glacial lakes identified using the above algorithm is in close agreement with previously published results on glacial lakes in Gangotri glacier using different techniques. Thus, a combination of DFPS and edge detection process has successfully segregated glacial lakes from other features present in Gangotri glacier.  相似文献   
13.
14.
The present work addresses the long-standing issues on the characterization aspect of the Proterozoic siliciclastic successions exposed in the central part of the Lesser Himalaya, restricted between the Main Boundary Thrust (MBT) and the Main Central Thrust (MCT). Geologic, sedimentologic, and petrographic study divides the Lesser Himalaya in two zones- northern Palaeo- Mesoproterozoic Inner Lesser Himalayan (ILH) and southern Neoproterozoic Outer Lesser Himalayan (OLH) zones. The major lithofacies recognized from the zones are - (i) coarse grained siliciclastic (CGS), (ii) interbedded medium and fine-grained siliciclastic (IMFS), (iii) argillite (ARG), and (iv) siliciclastic–argillite rhythmites (SAR). Amongst all these facies, the nearshore IMFS facies shows consistent presence in both OLH and ILH zones. From the facies distribution pattern, a northwest–southeasterly trending palaeo- shoreline has been envisaged. The CGS facies in the ILH hints towards an alluvial fan setting during 1.8 Ga rifting phase associated with penecontemporaneous basic magmatism. Compositionally, the siliciclastics of both the zones (ILH and OLH) are arenite and wacke types with minimal variation in their detrital proportions, derived from the early Proterozoic (between 2.4-1.6Ga) Aravalli-Delhi Supergroup provenance. Nearly matching types and content of detrital modes and the lithofacies pattern of the ILH and OLH siliciclastics probably conclude the derivation from the rising (nearby) Aravalli-Delhi orogen and deposition in a foreland like situation.  相似文献   
15.
16.
Curvature describes about the bending of surface by which a surface deviates from flat plane or a curve deviates from straight. The Himalaya has numerous geodynamic features with complex geological setup and extreme undulating topography. In this context, interpretation of gravity data has been used for enhancing important features to delineate structural trend for understanding thrust-fault locations and crustal structural setup in north-west Himalaya. Gravity data interpretation not only help to study varying lateral changes in density with lithological changes but also properties of gradients to interpret sub-surface structure and edges of the geological features. Attempt has been made to interpret various curvatures analysis like maximum, minimum, most-positive and most-negative curvatures using Bouguer gravity data to estimate the automatic thrust-fault locations in Dehradun-Badrinath area falling in the north-western part of Himalaya, India.  相似文献   
17.
A field experiment was conducted from 2 May 2010 to 1 May 2012 in the Gurbantunggut Desert, the second largest desert in China, to investigate saltation activity and its threshold velocity, and their relations with atmospheric and soil conditions. The results showed that saltation activity occurred more frequently during 08:00–20:00 Local Standard Time in spring and summer, with air temperatures between 20.0 and 29.0 °C, water vapor pressures between 0.6 and 0.9 kPa, soil temperatures between 25.0 and 30.0 °C, and a soil moisture lower than 0.04 m3/m3. At 2 m height, the saltation threshold velocity varied between 11.1 and 13.9 m/s, with a mean of 12.5 m/s. Threshold velocity showed clear seasonal variations in the following sequence: spring (11.7 m/s) < autumn (12.7 m/s) < summer (13.6 m/s). Affected by soil conditions, aeolian sand transport was weak, with an average annual aeolian sand that transported across a section (1.0 m × 2.0 m) of less than 6.0 kg.  相似文献   
18.
Subimal Ghosh 《水文研究》2010,24(24):3558-3567
The rainfall patterns of neighbouring meteorological subdivisions of India are similar because of similar climatological and geographical characteristics. Analysing the rainfall pattern separately for these meteorological subdivisions may not always capture the correlation and tail dependence. Furthermore, generating the multivariate rainfall data separately may not preserve the correlation. In this study, copula method is used to derive the bivariate distribution of monsoon rainfall in neighbouring meteorological subdivisions. Different Archimedean copulas are used for this purpose and the best copula is selected based on nonparametric test and tail dependence coefficient. The fitted copula is then applied to derive the bivariate distribution, joint return period and conditional distribution. Bivariate rainfall data is generated with the fitted copula and it is observed with the increase of sample size, the generated data is able to capture the correlation as well as tail dependence. The methodology is demonstrated with the case study of two neighbouring meteorological subdivisions of North‐East India: Assam and Meghalaya meteorological subdivision and Nagaland, Manipur, Mizoram and Tripura meteorological subdivision. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
19.
Here we apply quantitative technique to describe the seafloor seepages based on the multi-beam backscatter and bathymetric investigations to characterize the pockmark morphology. The variable seafloor backscatter strength for coarser seafloor sediments are related to the diagenesis derived from biodegraded seepages. In this regard, box counting method is used to estimate ‘fractal dimension’ for backscatter imagery data of 398 blocks. These blocks are further sub-grouped into six classes depending on the spread of pockmark related seepages. The study area lies 102 km west off Marmagao along the central west coast of India which contains pre-dominantly (70%) gas-charged sediments. Comparison between the estimated self-similar fractals reveals that there is approximately 97% correlation between the box (Dbox) and information (Dinfo) dimensions. Box dimension–derived fractal dimension values, suggest that the seepages are more along the fault trace in deeper waters, in comparison to sparsely distributed shallow water seepages. Besides, this poor seepage is confined within the smooth to moderately rough seafloor. It is established that the high backscatter strength along the upper slope of the pockmark region having higher fractal dimensions reflects multifractal behavior of seepage distribution. Entire area indicates patchy seepage patterns as supported by estimated fractal values showing intermittent fluctuations, which emphasizes non-linear behavior. Estimated self organizing criticality (SOC) parameters for six representative blocks reveal that the nature of pockmark, fault trace, sediment nature coupled with slumping of pockmark’s wall, sediment movement due to bottom currents are controlling the dynamic balance in the area seepage system. Further, our study emphasizing the multifractal behavior of seepage blocks, clearly depicts the drift in the seepage pattern.  相似文献   
20.
Computation of the seismic stability of rock wedges   总被引:1,自引:0,他引:1  
Summary Newmark's concept of computing the permanent displacement under seismic loads has been combined with the conventional limit equilibrium analysis to compute the displacements of a rock wedge. The rock wedge formed by the intersecting planes may or may not have a tension crack in the upper slope surface. As the static analysis of a rock wedge is available from the literature, only the seismic problem is treated theoretically in more details.A computer program has been developed to compute the displacements from the digitised input data of the acceleration-time-history. The program can take into account the water pressure on the intersecting planes and on the planes of the tension crack. The effect of rock anchors if present is also taken care of in addition to static surcharge loads. The program calculates the conventional static factor of safety, remaining resistance against sliding, the critical acceleration, exciting force, relative velocity with time and the cumulative displacements.Two model examples are presented: one with simple sinusoidal acceleration and the other one with actual earthquake data considering the different systems of forces acting on the wedge. The results are critically discussed with respect to the different parameters e. g. anchor forces, water pressure and cohesion influencing the magnitude of displacements under seismic loads. It is shown that the critical acceleration is a better index for the seismic stability than the conventional factor of safety.The critical acceleration presented in this paper serves as a very handy tool for a site engineer to get the first hand information about the stability of the wedge for a given acceleration-time-history without going into the details of dynamic analysis.Notations A, B Inclined intersecting planes - C, D Geometric points on the intersection ofA andB - a cr Critical acceleration - a h Horizontal acceleration - a v Vertical acceleration - a r Relative acceleration of the wedge - DF Driving force - DF dyn Dynamic driving force - DF st Static driving force - FS Factor of safety - g Acceleration due to gravity - m Mass of the wedge - RF Resisting force - RF dyn Dynamic resisting force - RF st Static resisting force - RS Remaining resisting force against sliding - RS dyn Total seismic induced force - RS st Remaining static resisting force against sliding - s r Cumulative relative displacement of the wedge - TRS Total remaining resisting force against sliding - v r Relative velocity of the wedge - W Weight of the wedge - W A ,W B Weight of the wedge in the planeA andB - Dip of line of intersection of the planesA andB - Average friction angle - A , B Friction angle of planeA andB - I, II, III, IV Points in the curve shown in Fig. 6  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号