首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   263篇
  免费   11篇
  国内免费   4篇
测绘学   6篇
大气科学   20篇
地球物理   84篇
地质学   61篇
海洋学   62篇
天文学   35篇
综合类   1篇
自然地理   9篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   4篇
  2018年   4篇
  2017年   6篇
  2016年   6篇
  2015年   3篇
  2014年   14篇
  2013年   9篇
  2012年   8篇
  2011年   12篇
  2010年   13篇
  2009年   17篇
  2008年   15篇
  2007年   14篇
  2006年   27篇
  2005年   13篇
  2004年   13篇
  2003年   5篇
  2002年   8篇
  2001年   8篇
  2000年   7篇
  1999年   13篇
  1998年   3篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1991年   4篇
  1990年   2篇
  1989年   3篇
  1987年   3篇
  1986年   4篇
  1985年   3篇
  1983年   2篇
  1981年   5篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
  1970年   2篇
排序方式: 共有278条查询结果,搜索用时 15 毫秒
271.
The problem of whether cumulate rocks were formed by crystal settling or by in situ crystallization after magma emplacement is an important issue concerning the mechanisms of magmatic differentiation. However, it is hard to distinguish these two processes for plutonic rocks because the primary texture and chemical composition have generally been modified by postcumulus processes. To contribute this problem, we studied the distribution and compositions of Cr-spinel inclusions hosted in olivine and plagioclase in the Murotomisaki Gabbroic Intrusion (MGI), SW Japan. It is shown that the olivine-hosted inclusions are restricted to specific horizons where accumulation of olivine phenocrysts is thought to have occurred and that the compositional variations of the Cr-spinel are explained by a secondary compositional modification that probably took place after the magma emplacement. It is also shown that the Cr-spinel inclusions in a chilled margin have suffered the least compositional modification and nearly retains the primary composition. Those in the interior of the intrusion, on the contrary, have been significantly modified by re-equilibration with residual melt driven by cation diffusions through the host phases. Those in plagioclase have been less modified. It is shown that all the spinel inclusions had primarily the same and common composition at the time of magma emplacement. This implies that all the inclusion-bearing crystals, olivine and plagioclase, represent primary phenocrysts that had already existed in the emplaced magma. In this way, spinel inclusion in the MGI may be regarded to be a useful petrographic “marker” for identifying intratelluric phenocrysts and also as a “tracer” to trace the motion of the primary phenocrysts after the magma emplacement.  相似文献   
272.
273.
274.
Debris flow is one of the dominant processes distributing large wood (LW) within mountainous catchments. However, little has been reviewed on wood-laden debris flow (WLDF), presumably owing to limited reviewable works. This article, therefore, navigates the international readers through 40 years of WLDF studies, most of which have been published only in Japanese. Firstly, we reviewed the historical development of Japanese WLDF particularly focusing on the 1980s and the 1990s. A series of post-disaster fieldworks from the July 1982 Nagasaki flood to the July 1990 Kumamoto flood provided 32 catchment-scale wood budgeting data; empirical relationships among drainage area, dominant tree species, sediment yield, and wood loads associated with single debris flow disasters were illustrated. Secondly, the characteristics of WLDF were summarized based on relevant previous studies on the recruitment, transport, and deposition processes of LW during debris flows. Thirdly, we discussed the connectivity between those Japanese WLDF studies and international LW studies by relating/contrasting their research approaches and spatiotemporal scales. In contrast to global LW research trends, Japanese WLDF studies have almost exclusively regarded LW as hazardous materials (i.e., “driftwood” or “woody debris”) that need to be retained upstream of the inhabited areas. Those practice-oriented WLDF studies were concentrated on drainage areas of 10−2 to 100 km2, representing 1–6 orders of magnitude smaller spatial scales than those generally covered by existing international LW studies. Strongly motivated by engineering requirements, “dynamic” interactions between debris flows and LW during floods have also been physically presented, mainly based on unique laboratory experiments involving steep flume (> 0.05) and mobile bed conditions. Finally, some future works for WLDF were briefly stated from practical and scientific perspectives. By “rediscovering” those WLDF studies domestically developed in Japanese debris flow channels since the 1980s, a more comprehensive understanding of LW dynamics in the river system may be achieved.  相似文献   
275.
This paper examines a real-time prediction method, aimed at application in active structural control. The examined method applies preceding seismic excitation information at a certain moment to a time-variant AutoRegressive (AR) model and uses it to predict near-future excitation information. The performances of this method and appropriate identification parameters are examined by numerical experiments. In fact, the results of these experiments show that a time-variant AR model with appropriate identification parameters has little change in low-frequency components despite change in AR coefficients. The performance of a fixed-coefficient AR model is thus examined. The results show that even a fixed-coefficient AR model can sufficiently predict 0·05-s-future excitation information. Copyright © 1999 John Wiley & Sons Ltd.  相似文献   
276.
Energy dissipation devices are necessary for base‐isolated buildings to control the deformation in the isolation system and to dissipate the earthquake‐induced energy. U‐shaped steel dampers (also known as U‐dampers) dissipate energy through plastic deformation of specially designed U‐shaped steel elements. This type of device can be installed at several locations in the isolation system. U‐dampers have been widely used in Japan for different types of isolated structures, such as hospitals, plants and residential buildings, since the 1995 Kobe Earthquake. Previous research has used static tests to estimate the performance of U‐dampers. However, the ultimate plastic deformation capacities and hysteretic behaviors of full‐scale U‐dampers under dynamic excitations still remain unclear. In addition, it is unclear whether the initial temperature has an effect on the hysteretic behavior and plastic deformation capacity of U‐dampers. In this paper, two series of dynamic loading tests of U‐dampers were conducted to evaluate the issues described earlier. The major findings of the study are (i) the loading speed has little effect on the plastic deformation capacity of U‐dampers; (ii) method to evaluate the ultimate plastic deformation capacities of U‐shaped steel dampers of different sizes is established using a Manson–Coffin relation‐based equation that is based on the peak‐to‐peak horizontal shear angle γt, which is defined as the lateral deformation amplitude (peak‐to‐peak amplitude) divided by the height of the dampers; (iii) the loading rate and the initial temperature have a minimal effect on the hysteretic behavior of the U‐dampers; and (iv) a bilinear model is proposed to simulate the force‐deformation relationships of the U‐dampers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
277.
A reliable performance of anti‐seismic devices when the upper‐structure is subjected to strong biaxial seismic excitation is of vital importance to ensure the latter doesn't reach critical behavior. U‐shaped steel dampers are hysteretic devices used to dissipate the earthquake‐induced energy of base‐isolated structures. In the framework of performance‐based design, which is gaining more and more recognition, it is of particular importance to assess the performance of base‐isolated structures with such dampers under different intensity levels of bidirectional ground motion. To achieve this goal, an analytical model able to simulate the bidirectional displacement response of an isolation system is adopted. Incremental dynamic analysis (IDA) is used to obtain the relation between the earthquake‐induced bidirectional damage of U‐shaped steel dampers and different intensity levels of the considered records. The performance of the dampers is categorized into 5 levels delimited by 4 limit states for which fragility curves are derived. The results obtained using the bidirectional approach are quantitatively compared to those given by employing an in‐plane model (widely used in current design practices in Japan) with the purpose of assessing whether the latter provides unconservative estimates of the performance of the dampers. The main conclusion is that, for large seismic intensities, the safety margin against fracture of the dampers is significantly overestimated when an in‐plane model is adopted. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
278.
A simple non‐linear control law is proposed for reducing structural responses against seismic excitations. This law defines control force dynamics by one differential equation involving a non‐linear term that restrains the control force amplitude. If non‐linearity is neglected, the control force becomes the force in a Maxwell element, so it is called the non‐linear‐Maxwell‐element‐type (NMW) control force. The NMW control force vs. deformation relation plots hysteretic curves. The basic performance of an SDOF model with the NMW control force is examined for various conditions by numerical analyses. Furthermore, the control law is extended to fit an MDOF structural model, and an application example is shown. The computational results show that the NMW control force efficiently reduces structural responses. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号