首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2674篇
  免费   157篇
  国内免费   33篇
测绘学   113篇
大气科学   234篇
地球物理   617篇
地质学   989篇
海洋学   227篇
天文学   409篇
综合类   13篇
自然地理   262篇
  2023年   15篇
  2022年   23篇
  2021年   64篇
  2020年   90篇
  2019年   74篇
  2018年   91篇
  2017年   109篇
  2016年   131篇
  2015年   94篇
  2014年   116篇
  2013年   165篇
  2012年   129篇
  2011年   175篇
  2010年   148篇
  2009年   157篇
  2008年   137篇
  2007年   104篇
  2006年   95篇
  2005年   98篇
  2004年   83篇
  2003年   80篇
  2002年   66篇
  2001年   53篇
  2000年   45篇
  1999年   35篇
  1998年   27篇
  1997年   32篇
  1996年   30篇
  1995年   29篇
  1994年   14篇
  1993年   16篇
  1992年   21篇
  1991年   18篇
  1990年   22篇
  1989年   12篇
  1988年   13篇
  1987年   20篇
  1986年   6篇
  1985年   22篇
  1984年   26篇
  1983年   18篇
  1982年   19篇
  1981年   22篇
  1980年   13篇
  1979年   8篇
  1978年   12篇
  1977年   14篇
  1976年   10篇
  1975年   14篇
  1974年   16篇
排序方式: 共有2864条查询结果,搜索用时 17 毫秒
81.
In situ flow-through attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy has been used to investigate the formation, and step-wise oxidation, of sulfoxyanions at the pyrite surface during oxidation by molecular oxygen. The surface was studied under two different pH regimes (pH 2.5 and pH 5.6) and under two light conditions (dark and ultraviolet light). It was experimentally observed that multiple sulfoxyanions were present at the pyrite surface during oxidation by molecular oxygen, spectroscopically illustrating the concept of sulfur step-wise oxidation. The results from photochemical experiments were complex and suggest a dependence on both pH and surface speciation.  相似文献   
82.
Particles in shear enclose important information about a rock's past and can potentially be used to decipher the kinematic history and mechanical behavior of a certain outcrop or region. Isolated rigid clasts in shear zones often exhibit systematic inclinations with respect to the shear-plane at small angles, tending towards the instantaneous stretching direction of the shear zone. This shape preferred orientation cannot be easily explained by any of the analytical theories used in geology. It was recently recognized that a weak mantle surrounding the clast or a slipping clast–matrix interface might be responsible for the development of the observed inclinations. Physical considerations lead us to conjecture that such mantled, rigid clasts can be effectively treated as voids that are not allowed to change their shape. The resulting equivalent void conjecture agrees well with numerical and field data and has the following important geological implications. (i) Clasts in shear zones can have stable positions in simple shear without the requirement of an additional pure shear component. (ii) The stable orientation can be approached either syn- or antithetically; hence, the clast can rotate against the applied shear sense. (iii) The strain needed to develop a strong shape preferred orientation is small (γ≈1) and therefore evaluations based on other theories may overestimate strain by orders of magnitude. (iv) The reconstruction of far-field shear flow conditions and kinematic vorticity analysis must be modified to incorporate these new findings.  相似文献   
83.
84.
The unexplored area of Azarhare in central Morocco is studied thanks to three sections composed of five lithological facies Main biostratigraphical and sedimentological results concern (1) the identification of Late Visean biozones, with important presence of problematic algae Ungdarella, (2) the regional extension of deposit sequences SD5, SD6 and SD7 previously defined, (3) and an analysis of the diagenetic kaolinite. To cite this article: A. Karim et al., C. R. Geoscience 337 (2005).  相似文献   
85.
86.
Micron-scale variations in the trace-element (TE) composition of tropical coral skeletons were measured using laser-ablation ICP-MS (LA-ICP-MS) as part of an investigation into the chemical processes underlying paleoenvrionmental proxy reconstructions. Fluctuations in B, Mg, Sr, Ba and U were measured at high spatial resolution in two Porites corals from the Great Barrier Reef (Australia), and the fine-scale fluctuations (< ∼1.0 mm) were compared with seasonal TE cycles in a third coral. Fine-scale TE variations were found to have a large amplitude over distances corresponding to less than 1 month growth. Variations were quasi-periodic and appeared to have characteristic wavelengths on weekly (6-7 d) and monthly (28 d) scales, although periodicity was not continuous and variations could not be matched either within or between individual corallites. Fine-scale variations between Mg, Sr and U were significantly correlated with each other (Sr and U are positively correlated, but negatively correlated with Mg). This 3D correlation “vector” has the same slope as the seasonal-scale Mg, Sr and U correlations, suggesting that the same chemical/biologic biomineralization process mediates trace element variations at both timescales. Importantly, the fine-scale variations are too large to be caused directly by daily to monthly fluctuations in sea-surface temperature. This means that seasonal variations in these elements cannot reflect purely inorganic temperature-dependent coprecipitation. Models of physicochemical calcification were developed to test whether changes in calcification rate could explain the trace-element correlations. The calculations show that increases in calcification rate will result in correlated decreases in all TE/Ca ratios. The models reproduce the Sr partition coefficient, trace-element correlation slopes, and amplitude of fine-scale variations for an average calcifying pH of 8.5, varying by ±0.2 pH units. The models, however, predict U partition coefficients which are too low, and cannot reproduce the negative correlation between Mg and the other trace elements, which may be caused by crystallographic factors.  相似文献   
87.
88.
The Sheep Mountain‐Little Sheep Mountain Anticlines, Bighorn Basin (USA) formed as basement‐cored Laramide structures in the formerly undeformed foreland of the thin‐skinned Sevier orogen. We take advantage of the well‐constrained microstructural network there to reconstruct differential stress magnitudes that prevailed during both Sevier and Laramide layer‐parallel shortening (LPS), before the onset of large‐scale folding. Differential stress magnitudes determined from tectonic stylolites are compared and combined to previous stress estimates from calcite twinning paleopiezometry in the same formations. During stress loading related to LPS, differential stress magnitudes transmitted from the distant Sevier thin‐skinned orogen into the sedimentary cover of the Bighorn basin (11–43 MPa) are higher than the differential stress magnitudes accompanying the early stage of LPS related to the thick‐skinned Laramide deformation (2–19 MPa). This study illustrates that the tectonic style of an orogen affects the transmission of early orogenic stress into the stable continental interior.  相似文献   
89.
Stream water temperature plays a significant role in aquatic ecosystems where it controls many important biological and physical processes. Reliable estimates of water temperature at the daily time step are critical in managing water resources. We developed a parsimonious piecewise Bayesian model for estimating daily stream water temperatures that account for temporal autocorrelation and both linear and nonlinear relationships with air temperature and discharge. The model was tested at 8 climatically different basins of the USA and at 34 sites within the mountainous Boise River Basin (Idaho, USA). The results show that the proposed model is robust with an average root mean square error of 1.25 °C and Nash–Sutcliffe coefficient of 0.92 over a 2‐year period. Our approach can be used to predict historic daily stream water temperatures in any location using observed daily stream temperature and regional air temperature data.  相似文献   
90.
We compared median runoff (R) and precipitation (P) relationships over 25 years from 20 mesoscale (50 to 5,000 km2) catchments on the Boreal Plains, Alberta, Canada, to understand controls on water sink and source dynamics in water‐limited, low‐relief northern environments. Long‐term catchment R and runoff efficiency (RP?1) were low and varied spatially by over an order of magnitude (3 to 119 mm/year, 1 to 27%). Intercatchment differences were not associated with small variations in climate. The partitioning of P into evapotranspiration (ET) and R instead reflected the interplay between underlying glacial deposit texture, overlying soil‐vegetation land cover, and regional slope. Correlation and principal component analyses results show that peatland‐swamp wetlands were the major source areas of water. The lowest estimates of median annual catchment ET (321 to 395 mm) and greatest R (60 to 119 mm, 13 to 27% of P) were observed in low‐relief, peatland‐swamp dominated catchments, within both fine‐textured clay‐plain and coarse‐textured glacial deposits. In contrast, open‐water wetlands and deciduous‐mixedwood forest land covers acted as water sinks, and less catchment R was observed with increases in proportional coverage of these land covers. In catchments dominated by hummocky moraines, long‐term runoff was restricted to 10 mm/year, or 2% of P. This reflects the poor surface‐drainage networks and slightly greater regional slope of the fine‐textured glacial deposit, coupled with the large soil‐water and depression storage and higher actual ET of associated shallow open‐water marsh wetland and deciduous‐forest land covers. This intercatchment study enhances current conceptual frameworks for predicting water yield in the Boreal Plains based on the sink and source functions of glacial landforms and soil‐vegetation land covers. It offers the capability within this hydro‐geoclimatic region to design reclaimed catchments with desired hydrological functionality and associated tolerances to climate or land‐use changes and inform land management decisions based on effective catchment‐scale conceptual understanding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号