首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   0篇
地球物理   1篇
天文学   59篇
  2001年   2篇
  1999年   9篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1990年   6篇
  1989年   10篇
  1988年   5篇
  1987年   2篇
  1985年   1篇
  1984年   3篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
排序方式: 共有60条查询结果,搜索用时 15 毫秒
31.
本文的目的是研究1.42、2.84、3.67GHz的毫秒级射电尖峰在太阳22周上升段出现的频次及计算源区的有关参数。 云南天文台三波段快速采样射电望远镜于1987年初投入观测。我们选择的观测时段是1987年5月-1988年12月。为太阳22周升段。其中36个毫秒射电尖峰事件及它们的极大流量被选取了(见英文表Ⅰ)。统计结果表明,三波段尖峰出现的频次比为24:13:3;三波段最大流量分别是2530.0、1364.0和21.8s.f.u;最小流量是33.2、15.2和16.3s.f.u;平均流量是434.8、216.5和19.1s.f.u。 根据这些统计结果,我们作了尖峰源区的参数计算。 1、尖峰源的尺度。由公式(1)算得三波段尖峰源的直径分别是140km,70km和50km,同Benz给出的≤200km相符。 2、尖峰源立体角。由公式(2)算得三波段分别为2.7×10~(-12)sr,6.8×10~(-13)sr,3.5×10~_(-13)sr。 3、尖峰源的亮温度,由公式(3)算得三波段亮温度如下: 频 率 极大值(K) 极小值(K) 平均值(K) 1.42GHz 1.5×10~(14) 2.0×10~(12) 8.1×10~(13) 2.84GHz 8.1×10~(13) 9.1×10~(11) 1.3×10~(12) 3.67GHz 1.3×10~(13) 8.2×10~(11) 1.1×10~(12) 4、尖峰源的磁场强度,用公式(4)、(5)算得三波段分别为250、500和700高斯。 从统计与计算结果我们看到,毫秒级射电尖峰辐射在1.42GHz出现的  相似文献   
32.
本文报告了3521MHz太阳射电望远镜全晶体管化的接收机系统。文中给出了中频放大系统、低频放大系统、调制源及其电源的结构原理、技术指标、测试方法及主要技术指标的测试结果。最后报告了主要调试经验。  相似文献   
33.
前言 陕西天文台研制的3521MHz太阳射电望远镜,1978年1月在陕台停止观测,同年年底运到云台。今年3月开始安装,6月基本调试完毕,7月开始试观测。 这次安装调试是在总结以前的研制经验的基础上,并根据该望远镜二年多的运转状况进行的。同时也结合了云台的实际情况,对望远镜的有关部份做了改动。 为了将这次安装调试工作总结出来,以不辜负在该望远镜上花了心血的同志们的期  相似文献   
34.
太阳空间观测为揭示太阳新的观测现象与研究开拓了新的途径。空间观测具有全波段、全时段、全方位以及无大气抖动和大气散射光等观测优点。本文着重探讨了太阳空间长波射电观测、X射线观测、紫外线观测的成就与研究结果。这些波段(包括光学)的爆发均起因于太阳大气中被加速的荷能电子与太阳等离子体、磁场相互作用而产生的电磁辐射,其能量约占太阳耀斑总量的1/4,即10^25J。  相似文献   
35.
本文介绍了日地空间环境和能量走廊,光学日冕和射电日冕,日冕瞬变和行星际瞬变。特别阐述了射电日冕瞬变的种类及其行星际效应。  相似文献   
36.
37.
本篇报告给出了9375MHz太阳射电望远镜新定标源系统的结构原理、组装及测试方法,并做到了室内控制。  相似文献   
38.
39.
本文介绍用“三波段太阳射电高时间分辨率同步观测系统”所观测到的1988年12月16日三波段(1420MHz、2840MHz、4000MHz)太阳射电大爆发中毫秒级精细结构的观测特征,指出太阳射电快速活动在射电爆发的不同阶段具有不同的特征,首先在爆发的上升沿出现2840MHz的毫秒尖峰辐射群,继而在1420MHz上出现毫秒级尖峰辐射群,并且还在以后的几个爆发次峰上陆续出现,在长达两小时的大爆发过程中,在4000MHz上始终未产生毫秒级尖峰辐射,这也反应了射电尖峰辐射现象存在着一定的带宽。特别引起注意的是毫秒级尖峰辐射群均出现在射电爆发的峰值附近,在其它时间的记录中尚未发现毫秒尖峰辐射。 三波段的秒级射电爆发曲线如图1所示。毫秒级精细结构如图2所示。由图2可见,单个尖峰辐射的持续随频率的减小而增加,2840MHz多为10—20ms,1420MHz多为30—170ms;所产生的尖峰辐射群强度不大,而且很少有孤立的尖峰;2840MHz尖峰辐射的强度一般为450—900sfu,1420MHz一般为500—1770sfu(1sfu=10~(-22)WM~(-2)Hz~(-1));还特别引起注意的是在2840MHz上当所出现的尖峰辐射群结束时,往往出现持续时间为100ms的流量下降现象,(此种现象在以往的观测中未曾见过),详见图2b和2c;关于事件尖峰辐射的丰度,仅对几个尖峰辐射群作了统计如下: 在1420M  相似文献   
40.
参加了Flares22和Max'91国际联合观测之后,我们处理了三个频率(1.42,2.84,3.67GHz)和四个频率(1.42,2.00,2.84,4.00GHz)或(1.42,2.13,2.84,4.26GHz)快速采样射电望远镜的观测资料。结果除了发现射电爆发源的局部区域中存在有射电辐射的第四种基本分量而外,还在微波爆发快速精细结构中发现了三种基本时间单元。其量级分别是:0.1秒>τ1≥1毫秒;1秒>τ2≥0.1秒;100秒>τ3≥1秒。尽管出现在各自基本时间单元内的FFS事件的形态及特性各自不同,但是,叠加在射电爆发背景之上的特性,构成了它们的共同属性。三种基本时间单元的确认,对于研究微波快速活动的精细时间结构,划分FFS事件的种类找到了根据。三种基本时间单元的研究,对于深入探讨产生FFS源的ECM理论,也具有重要的科学价值。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号