首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   276篇
  免费   10篇
  国内免费   4篇
测绘学   10篇
大气科学   10篇
地球物理   46篇
地质学   130篇
海洋学   36篇
天文学   30篇
综合类   2篇
自然地理   26篇
  2021年   1篇
  2020年   5篇
  2019年   2篇
  2018年   9篇
  2017年   3篇
  2016年   4篇
  2015年   6篇
  2014年   8篇
  2013年   18篇
  2012年   7篇
  2011年   13篇
  2010年   7篇
  2009年   21篇
  2008年   14篇
  2007年   5篇
  2006年   12篇
  2005年   12篇
  2004年   11篇
  2003年   11篇
  2002年   9篇
  2001年   11篇
  2000年   13篇
  1999年   4篇
  1998年   4篇
  1997年   6篇
  1996年   5篇
  1994年   2篇
  1993年   5篇
  1992年   2篇
  1991年   7篇
  1990年   3篇
  1989年   3篇
  1988年   7篇
  1987年   5篇
  1986年   4篇
  1985年   1篇
  1984年   6篇
  1983年   1篇
  1982年   5篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1978年   6篇
  1977年   3篇
  1967年   1篇
  1965年   1篇
排序方式: 共有290条查询结果,搜索用时 15 毫秒
11.
The Felbertal scheelite deposit in the Eastern Alps has been regarded as the type locality for stratabound scheelite deposits. It is hosted by a Cambro-Ordovician metavolcanic arc sequence with minor Variscan granitoids (∼ 340 Ma) in the central Tauern Window. Re–Os model ages for molybdenite from the Felbertal tungsten deposit range between ∼ 358 and ∼ 336 Ma and record several pulses of magmatic-hydrothermal-metamorphic molybdenite formation. Molybdenite ages from the K2 orebody, a scheelite-rich quartz mylonite in the Western ore field, indicate that both mineralisation and mylonite are Variscan in age and suggest that the shear zone was active for ∼ 20 million years. Early stage tungsten mineralisation (Scheelite 1) in quartzitic ores in the Eastern ore field, which is free of molybdenite, yielded very low to near blank levels of Re and Os and thus could not be dated. However, molybdenite from scheelite–quartz stringers, previously interpreted as a feeder stockwork to quartzitic scheelite ore of presumed Cambrian age, yielded Variscan Re–Os ages of ∼ 342 and ∼ 337 Ma. Dating of molybdenite contained in scheelite ores thus far provides no indication of a Cambrian component to the tungsten mineralisation. Our data are consistent with a model of either granite intrusion-related ore formation and coeval metamorphic overprint during the Early Carboniferous or, alternatively, molybdenite formation may be exclusively attributed to Variscan metamorphism (see Stein 2006).  相似文献   
12.
Updated aeromagnetic maps of New Mexico together with current knowledge of the basement geology in the northern part of the state (Sangre de Cristo and Sandia–Manzano Mountains)—where basement rocks were exposed in Precambrian-cored uplifts—indicate that the northeast-trending Proterozoic shear zones that controlled localization of ore deposits in the Colorado mineral belt extend laterally into New Mexico. The shear zones in New Mexico coincide spatially with known epigenetic precious- and base-metal ore deposits; thus, the mineralized belts in the two states share a common inherited basement tectonic setting. Reactivation of the basement structures in Late Cretaceous–Eocene and Mid-Tertiary times provided zones of weakness for emplacement of magmas and conduits for ore-forming solutions. Ore deposits in the Colorado mineral belt are of both Late Cretaceous–Eocene and Mid-Tertiary age; those in New Mexico are predominantly Mid-Tertiary in age, but include Late Cretaceous porphyry-copper deposits in southwestern New Mexico.The mineralized belt in New Mexico, named the New Mexico structural zone, is 250-km wide. The northwest boundary is the Jemez subzone (or the approximately equivalent Globe belt), and the southeastern boundary was approximately marked by the Santa Rita belt. Three groups (subzones) of mineral deposits characterize the structural zone: (1) Mid-Tertiary porphyry molybdenite and alkaline-precious-metal deposits, in the northeast segment of the Jemez zone; (2) Mid-Tertiary epithermal precious-metal deposits in the Tijeras (intermediate) zone; and (3) Late Cretaceous porphyry-copper deposits in the Santa Rita zone. The structural zone was inferred to extend from New Mexico into adjacent Arizona. The structural zone provides favorable sites for exploration, particularly those parts of the Jemez subzone covered by Neogene volcanic and sedimentary rocks.  相似文献   
13.
The extent of the Barents-Kara Ice Sheet during the eastern Last Glacial Maximum (LGM) is not yet fully known. A detailed echo-sounding survey performed during the Boris Petrov Expedition 2001 permitted the detailed mapping of part of it. Based on the profiling results, a southern connection between the LGM Barents-Kara Ice Sheet and a local ice sheet on Taymyr Peninsula appears to be unlikely. Based on sediment core data and profiling results, most of the terrigenous river-derived material accumulated in the estuaries during late Holocene times, whereas during early Holocene times of lowered sea level major amounts were transported further offshore and accumulated on the shelf. During the post-glacial sea level rise, the main depocentre migrated southward, reaching its present position no earlier than about 6 cal. Ky BP (or 5.2 Kya). Future studies of accelerator mass spectrometry (AMS) 14C-dated sediment cores will allow a detailed reconstruction of the variability of fluvial sediment discharge and the history of glaciation in the Kara Sea during late Quaternary times.  相似文献   
14.
In the first of four pieces arising from Gill Foulger's challenge to the mantle plume hypothesis (last issue), Carol Stein and Seth Stein join the debate with some data and comment on heat-flow around Iceland.  相似文献   
15.
The Dead Sea is a terminal lake of one of the largest hydrological systems in the Levant and may thus be viewed as a large rain gauge for the region. Variations of its level are indicative of the climate variations in the region. Here, we present the decadal- to centennial-resolution Holocene lake-level curve of the Dead Sea. Then we determine the regional hydroclimatology that affected level variations. To achieve this goal we compare modern natural lake-level variations and instrumental rainfall records and quantify the hydrology relative to lake-level rise, fall, or stability. To quantify that relationship under natural conditions, rainfall data pre-dating the artificial Dead Sea level drop since the 1960s are used. In this respect, Jerusalem station offers the longest uninterrupted pre-1960s rainfall record and Jerusalem rains serve as an adequate proxy for the Dead Sea headwaters rainfall. Principal component analysis indicates that temporal variations of annual precipitation in all stations in Israel north of the current 200 mm yr−1 average isohyet during 1940–1990 are largely synchronous and in phase (70% of the total variance explained by PC1). This station also represents well northern Jordan and the area all the way to Beirut, Lebanon, especially during extreme drought and wet spells. We (a) determine the modern, and propose the past regional hydrology and Eastern Mediterranean (EM) climatology that affected the severity and length of droughts/wet spells associated with multiyear episodes of Dead Sea level falls/rises and (b) determine that EM cyclone tracks were different in average number and latitude in wet and dry years in Jerusalem. The mean composite sea level pressure and 500-mb height anomalies indicate that the potential causes for wet and dry episodes span the entire EM and are rooted in the larger-scale northern hemisphere atmospheric circulation. We also identified remarkably close association (within radiocarbon resolution) between climatic changes in the Levant, reflected by level changes, and culture shifts in this region.  相似文献   
16.
U-series dating can be an effective means to obtain accurate and precise ages on Quaternary carbonates. However, most samples require a correction for U and Th in admixed detritus. This complication is often addressed through generation of U-Th isochrons, requiring analyses of several coeval samples. In addition, presence of water-derived (hydrogenous) Th in the carbonate can cause inaccuracies in isochron ages.This study reports a high-resolution U-series chronology of sediments deposited by Lake Lisan, the last glacial precursor of the Dead Sea. The strategy employed combines multiple measurements from a few stratigraphic heights and fewer analyses from many heights in a single described and measured section. The resulting chronology is based on ages at 22 heights in a ∼40-m-thick section covering the interval of ∼70-14 calendar ka BP. The effects of admixed detritus are evaluated using trace elements. Nearly pure aragonite samples, indicated by very low abundances of insoluble elements such as Nb and Zr, were found to contain hydrogenous Th, which causes the uncorrected U-230Th age of a modern sample to be ∼2.5 ka. Nevertheless, accurate ages have been obtained by correcting for the detrital and aqueous interferences. The resulting ages are in stratigraphic order, and their accuracy is evidenced by consistency of Lisan Formation U-series and 14C ages with the coral-based calendar-radiocarbon age calibration.The U-Th ages provide a context to unravel the limnological history of Lake Lisan. Boundaries between the Lower, Middle, and Upper stratigraphic units correspond to the MIS 4/3 and 3/2 transitions, respectively. During MIS 2 and 4 the lake generally showed a stable two-layer configuration and a positive fresh-water balance, reflected by deposition of laminated aragonite-detritus. Dry intervals during MIS 2 and 4 are indicated by thick gypsum layers and an inferred depositional hiatus, which are temporally associated with Heinrich events H1 at ∼17 ka and H6 at ∼65 ka, respectively. During MIS 3 the lake level was unstable with intermittent dry periods indicated by abundant clastic layers and a significant hiatus between ∼43-49 ka. Clastic layers are associated with Dansgaard-Oeschger events during MIS 3, and indicate lake level declines during abrupt Northern Hemisphere warmings. Overall, the climate of the Eastern Mediterranean region shows a strong linkage to the Northern Hemisphere climate, with increasing lake size and stability during cold periods, and fluctuations and dessication during warmings and Heinrich events.  相似文献   
17.
18.
We investigated the Sea-Rain-Lake relation during the Last Glacial-Holocene in the East Mediterranean region by comparing the δ18O and δ13C records of authigenic aragonite deposited in Lake Lisan, the Dead Sea, Mediterranean foraminifera, and speleothems. The Lisan Formation data display long- and short-term variations of δ18O, representing steady-state conditions of the lake (e.g., 5.6‰ ± 0.5‰ and 4.5‰ ± 1‰ in the Upper and Lower Members of the Lisan Formation, respectively), and short-term excursions reflecting large floods and droughts. The long-term (steady-state) δ18O values of the Lisan aragonites show similarity to the corresponding time-equivalent records of the Eastern Mediterranean foraminifera and Judea Mountain speleothems: The Last Glacial deposits are in all of them 2‰-3‰ heavier than the Holocene ones. We interpret this similarity as reflecting the significance of the source effect on the long-term behavior of isotopic reservoirs: Speleothem δ18O is strongly influenced by the marine reservoir that contributes its vapor to rain formation; the lake δ18O is dominated by the composition of the inflowing water. Short-term variations in the isotopic composition of rainfall are dominated by the amount effect and the temperature and those of the Lake’s upper water mass by the lake’s water balance.δ13C values are more variable than δ18O in the same Lisan sequences (e.g., δ13C in the Lower Member is 1.0‰ ± 1.7‰, whereas δ18O is 4.6‰ ± 0.7‰) and are 1‰ to 1.5‰ higher in the Upper Member than in the Lower and Middle Members of the Lisan Formation. These variations reflect significant increase in primary productivity of the lake and algal bloom activity. It appears that the hypersaline-saline lakes were not as “dead” as the Dead Sea is and that algal activity had an important impact upon the geochemistry of Lake Lisan.The δ18O data combined with independent geochemical and limnologic information (e.g., level fluctuations) indicate that Lisan time was characterized by high precipitation-high lake stands-high atmospheric humidity, whereas the Holocene Dead Sea shows the opposite behavior. This paleoclimatic reconstruction is consistent with independent evidence for significantly wetter conditions in the East Mediterranean region during the Last Glacial period.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号