首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   472篇
  免费   6篇
  国内免费   6篇
测绘学   10篇
大气科学   62篇
地球物理   81篇
地质学   206篇
海洋学   28篇
天文学   77篇
综合类   2篇
自然地理   18篇
  2020年   3篇
  2019年   7篇
  2018年   7篇
  2017年   6篇
  2016年   11篇
  2015年   10篇
  2014年   12篇
  2013年   40篇
  2012年   17篇
  2011年   27篇
  2010年   28篇
  2009年   35篇
  2008年   26篇
  2007年   17篇
  2006年   18篇
  2005年   15篇
  2004年   19篇
  2003年   20篇
  2002年   17篇
  2001年   7篇
  2000年   6篇
  1999年   8篇
  1998年   4篇
  1997年   4篇
  1996年   6篇
  1995年   4篇
  1994年   5篇
  1991年   5篇
  1990年   5篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   3篇
  1984年   4篇
  1983年   5篇
  1982年   4篇
  1981年   3篇
  1980年   7篇
  1974年   3篇
  1973年   3篇
  1970年   4篇
  1969年   3篇
  1960年   3篇
  1956年   3篇
  1955年   2篇
  1953年   2篇
  1951年   2篇
  1950年   2篇
  1948年   4篇
排序方式: 共有484条查询结果,搜索用时 15 毫秒
51.
Abstract– We studied the mineralogy, petrology, and bulk, trace element, oxygen, and noble gas isotopic compositions of a composite clast approximately 20 mm in diameter discovered in the Larkman Nunatak (LAR) 04316 aubrite regolith breccia. The clast consists of two lithologies: One is a quench‐textured intergrowth of troilite with spottily zoned metallic Fe,Ni which forms a dendritic or cellular structure. The approximately 30 μm spacings between the Fe,Ni arms yield an estimated cooling rate of this lithology of approximately 25–30 °C s?1. The other is a quench‐textured enstatite‐forsterite‐diopside‐glass vitrophyre lithology. The composition of the clast suggests that it formed at an exceptionally high degree of partial melting, perhaps approaching complete melting, and that the melts from which the composite clast crystallized were quenched from a temperature of approximately 1380–1400 °C at a rate of approximately 25–30 °C s?1. The association of the two lithologies in a composite clast allows, for the first time, an estimation of the cooling rate of a silicate vitrophyre in an aubrite of approximately 25–30 °C s?1. While we cannot completely rule out an impact origin of the clast, we present what we consider is very strong evidence that this composite clast is one of the elusive pyroclasts produced during pyroclastic volcanism on the aubrite parent body ( Wilson and Keil 1991 ). We further suggest that this clast was not ejected into space but retained on the aubrite parent body by virtue of the relatively large size of the clast of approximately 20 mm. Our modeling, taking into account the size of the clast, suggests that the aubrite parent body must have been between approximately 40 and 100 km in diameter, and that the melt from which the clast crystallized must have contained an estimated maximum range of allowed volatile mass fractions between approximately 500 and approximately 4500 ppm.  相似文献   
52.
Abstract– We report concentrations and isotopic compositions of He, Ne, and Ar measured with high spatial resolution along a radial traverse of a silicon carbide (SiC) quadrant of the Genesis mission concentrator target. The Ne isotopic composition maps instrumental fractionation as a function of radial position in the target: the maximum observed isotopic fractionation is approximately 33‰ per mass unit between the center and periphery. The Ne fluence is enhanced by a factor of 43 at the target center and decreases to 5.5 times at the periphery relative to the bulk solar wind fluence. Neon isotopic profiles measured along all four arms of the “gold cross” mount which held the quadrants in the concentrator target demonstrate that the concentrator target was symmetrically irradiated during operation as designed. We used implantation experiments of Ne into SiC and gold to quantify backscatter loss and isotopic fractionation and compared measurements with numerical simulations from the code “stopping and range of ions in matter.” The 20Ne fluence curve as a function of radial distance on the target may be used to construct concentration factors relative to bulk solar wind for accurate corrections for solar wind fluences of other light elements to be measured in the concentrator target. The Ne isotopic composition as a function of the radial distance in the SiC quadrant provides a correction for the instrumental mass‐dependent isotopic fractionation by the concentrator and can be used to correct measured solar wind oxygen and nitrogen isotopic compositions to obtain bulk solar wind isotopic compositions.  相似文献   
53.
The phase-space structure of our Galaxy holds the key to understand and reconstruct its formation. The ΛCDM model predicts a richly structured phase-space distribution of dark matter and (halo) stars, consisting of streams of particles torn from their progenitors during the process of hierarchical merging. While such streams quickly loose their spatial coherence in the process of phase mixing, the individual stars keep their common origin imprinted into their kinematic and chemical properties, allowing the recovery of the Galaxy’s individual “building blocks”. The field of Galactic Archeology has witnessed a dramatic boost over the last decade, thanks to the increasing quality and size of available data sets. This is especially true for the solar neighborhood, a volume of 1–2 kpc around the sun, where large scale surveys like SDSS/SEGUE continue to reveal the full 6D phase-space information of thousands of halo stars. In this review, I summarize the discoveries of stellar halo streams made so far and give a theoretical overview over the search strategies imployed. This article is intended as an introduction to researchers new to the field, but also as a reference illustrating the achievements made so far. I conclude that disentangling the individual fragments from which the Milky Way was built requires more precise data that will ultimately be delivered by the Gaia mission.  相似文献   
54.
Redistribution of HFSE elements during rutile replacement by titanite   总被引:2,自引:0,他引:2  
Titanite growth at the expense of rutile during retrograde hydration of eclogite into amphibolite is a common phenomenon. We investigated an amphibolite sample from the Tromsø eclogite facies terrain in Northern Norway to gain insight into the trace element distribution between rutile and titanite during incomplete resorption of the rutile by titanite. Patchy compositional zoning of Al, Ti, and F in titanite relates to the presence of a fluid with variable Ti/Al and/or F during its growth. Laser ablation ICP–MS and electron microprobe data for high field strength elements (HFSE: Nb, Zr, Ta, and Hf) of rutile resorbed by titanite indicate a pronounced enrichment of these elements in the rim of a large single rutile crystal (~8 mm) and a systematic decrease towards uniform HFSE contents in the large core. HFSE contents of smaller rutile grains (~0.5 mm) and rutile inclusions (<100 μm) in the titanite overgrowth are similar or higher than in the rims of large rutile crystals. Element profiles from the rim inward demonstrate that HFSE enrichment in rutile is controlled by diffusion. HFSE ratios in diffusion-altered rutile show systematic variations compared with the uniform core composition of the large rutile. Modelling of Zr and Nb diffusion in rutile indicates that diffusion coefficients in rutile in fluid-dominated natural systems must be considerably higher than those determined experimentally at 1 bar in dry systems. Variations of HFSE contents in the newly formed titanite show no systematic spatial distribution. HFSE ratios in titanite and the rims of rutile are different, indicating different solid/fluid distribution coefficients in these minerals. Element fractionation by diffusion into the relict rutile and during fluid-mediated growth of new titanite could substantially change the HFSE budget of these minerals and could affect their use for geochemical tracing and other applications, such as Zr-based geothermobarometry.  相似文献   
55.
We have analyzed nitrogen, neon and argon abundances and isotopic ratios in target material exposed in space for 27 months to solar wind (SW) irradiation during the Genesis mission. SW ions were extracted by sequential UV (193 nm) laser ablation of gold-plated material, purified separately in a dedicated line, and analyzed by gas source static mass spectrometry. We analyzed gold-covered stainless steel pieces from the Concentrator, a device that concentrated SW ions by a factor of up to 50. Despite extensive terrestrial N contamination, we could identify a non-terrestrial, 15N-depleted nitrogen end-member that points to a 40% depletion of 15N in solar-wind N relative to inner planets and meteorites, and define a composition for the present-day Sun (15N/14N = [2.26 ± 0.67] × 10−3, 2σ), which is indistinguishable from that of Jupiter’s atmosphere. These results indicate that the isotopic composition of nitrogen in the outer convective zone of the Sun has not changed through time, and is representative of the protosolar nebula. Large 15N enrichments due to e.g., irradiation, low temperature isotopic exchange, or contributions from 15N-rich presolar components, are therefore required to account for inner planet values.  相似文献   
56.
Facies analyses of Pleistocene deposits from southern coastal Tanzania (Lindi District) document that sediments formed in a wetland evolving on a coastal terrace in the Lindi Fracture Zone foreland. The exposed succession shows a marked sedimentary change from tidal to terrestrial facies. 14C analyses on gastropod shells indicate the emergence of the Lindi coast at ∼ 44 14C ka BP. Emergence and subsequent elevation of terraces to 21 m above present-day sea level was linked to the falling eustatic sea level prior to the last glacial maximum, and to a periodic elevation due to extensional tectonic episodes in the eastern branch of the East African Rift System (EARS). Since ∼ 44 14C ka BP tectonic uplift at the coast was 80-110 m, comparable to that in the extreme uplift areas of the EARS.  相似文献   
57.
In this study, we address volume diffusion of ytterbium in yttrium aluminum garnet (YAG) using thin-film single crystal diffusion couples. We employ analytical transmission electron microscopy (ATEM) as a tool for combined microstructural and microchemical analysis and compare the results to Rutherford backscattering (RBS) analysis. Given the high spatial resolution of the method, we focus on microstructural changes of the thin-film diffusant source during the diffusion anneal. We evaluate the potential influence of the associated changes in its transport properties on the evolution of concentration profiles in the single crystal substrate. This approach allows us to test the reliability of determination of volume diffusion coefficients from thin-film diffusion experiments. We found that for the chosen experimental setting, the influence of thin-film re-crystallization is small when compared with the experimental uncertainty and good estimates for the volume diffusion coefficients of Yb in YAG can be obtained using standard assumptions. Both Yb-concentration profiles analyzed with ATEM and with RBS give similar results. At 1,450°C and 1 bar, we infer log D Yb (m2/s) values of −19.37 ± 0.07 (TEM) and −19.84 ± 0.02 (RBS). Although the change in thin-film transport properties associated with successive crystallization during the diffusion anneal does not play a major role for our experimental setup, this effect cannot generally be ignored.  相似文献   
58.
This paper presents a numerical implementation of two-phase capillary hysteresis and its combination with a capillary interface condition for the treatment of heterogeneities. The hysteresis concepts chosen in this work are first implemented in a node-centered FV discretization scheme and subsequently combined with the interface condition that predicts sharp saturation discontinuities at material interfaces, based on a pressure equilibrium concept. This approach allows for the approximation of history-dependent, and at the same time discontinuous, saturations at material interfaces. The resulting model provides a well-defined evolution of the hysteretic capillary pressure–saturation relationships at material interfaces that is independent of the grid spacing. As demonstrated with a simple 1-D example, this concept therefore offers the advantage that the solution of a two-phase flow problem involving hysteresis does not relate to the grid resolution at the material interfaces.  相似文献   
59.
We present a study of the inneralpine basin of Hopfgarten focused on the analysis of basin fill in order to reveal its formation in relation to paleo-ice flow and tectonics. The study is based on geological mapping as well as seismic (reflection and refraction) and geoelectrical surveys. The oldest sequence in the basin, identified by seismic stratigraphy at 400 m below surface, consists of coarse grained sediments of supposedly Oligocene to Miocene age, which subsided along faults linked to the Inn fault. Three superimposed sequences, each displaying baselaps in contact with a subglacially formed unconformity and sigmoid foresets, show pleniglacial conditions followed by a glaciolacustrine environment. The uppermost of these three sequences lies on top of last glacial maximum till (LGM; Würmian Pleniglacial; MIS 2) and represents Termination I. The middle sequence is classified as Termination II following the Rissian Pleniglacial (MIS 6). The oldest glacial sequence cannot be constrained chronostratigraphically but might correlate with Termination V following the major glaciation of MIS 12. Limited glacial erosion during the LGM occurred only during the ice build-up phase. Further overdeepening was impeded due to topographic barrier and mutual blockades of glaciers within this highly dissected landscape. The occurrence and relative timing of the impediment was controlled by the onset of transfluences and thus by the altitude of coles. The higher amount of overdeepening during older glacial periods is explained by longer phases of free ice advance in the ice build up phase due to higher transfluences routes at that time. Thus, the preservation of older Pleistocene sequences within the basin may be the result of the lowering of watersheds from one glaciation to the next. Our model of an inverse relationship between glacial shaping of the surface and the subsurface may apply to similar Alpine landscapes as well.  相似文献   
60.
Floodplain ecosystems are affected by flood dynamics, nutrient supply as well as anthropogenic activities. Heavy metal pollution poses a serious environmental challenge. Pollution transfer from the soil to vegetation is still present at the central location of Elbe River, Germany. The goal of this study was to assess and separate the current heavy metal contamination of the floodplain ecosystem, using spectrometric field and laboratory measurements. A standardized pot experiment with floodplain vegetation in differently contaminated soils provided the basis for the measurements. The dominant plant types of the floodplains are: Urtica dioica, Phalaris arundinacea and Alopecurus pratensis, these were also chemically analysed. Various vegetation indices and methods were used to estimate the red edge position, to normalise the spectral curve of the vegetation and to investigate the potential of different methods for separating plant stress in floodplain vegetation. The main task was to compare spectral bands during phenological phases to find a method to detect heavy metal stress in plants. A multi-level algorithm for the curve parameterisation was developed. Chemo-analytical and ecophysiological parameters of plants were considered in the results and correlated with spectral data. The results of this study show the influence of heavy metals on the spectral characteristics of the focal plants. The developed method (depth CR1730) showed significant relationship between the plants and the contamination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号