首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   185篇
  免费   12篇
  国内免费   3篇
测绘学   7篇
大气科学   17篇
地球物理   43篇
地质学   68篇
海洋学   12篇
天文学   36篇
自然地理   17篇
  2022年   1篇
  2021年   4篇
  2020年   6篇
  2019年   9篇
  2018年   5篇
  2017年   9篇
  2016年   14篇
  2015年   6篇
  2014年   8篇
  2013年   6篇
  2012年   11篇
  2011年   18篇
  2010年   8篇
  2009年   29篇
  2008年   13篇
  2007年   8篇
  2006年   8篇
  2005年   3篇
  2004年   3篇
  2003年   4篇
  2002年   8篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1992年   2篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1977年   1篇
  1973年   1篇
排序方式: 共有200条查询结果,搜索用时 312 毫秒
91.
Multiple-point statistics are used to model facies heterogeneities in the vadose zone of the Komadugu-Yobe River valley (southeastern Niger) which is presently submitted to an undergoing intensive agricultural development; therefore, increasing quantitative and qualitative pressures are exerted on groundwater resources. The sand–clay heterogeneities are analyzed by means of a Landsat image acquired during a high flow period over a 160 km stretch in the downstream part of the valley and a set of 50 boreholes drilled near the town of Diffa (4 km×4 km area). The horizontal variograms of heterogeneities are characterized by a noticeably constant length scale of 380 m and clayey objects are shown to be randomly distributed in space according to a Poisson process. A set of two-dimensional vertical images is built based on a Boolean procedure and the Snesim algorithm is used to simulate synthetic three-dimensional media. When the vertical correlation length is fitted, the three-dimensional model satisfactorily reproduces the second order statistics of heterogeneities and the specific facies patterns.  相似文献   
92.
We argue that the first stars may have spanned the conventional mass range rather than be identified with the very massive objects  (∼100–103 M)  favoured by numerical simulations. Specifically, we find that magnetic field generation processes acting in the first protostellar systems suffice to produce fields that exceed the threshold for magneto-rotational instability (MRI) to operate, and thereby allow the MRI dynamo to generate equipartition-amplitude magnetic fields on protostellar mass scales below  ∼50 M  . Such fields allow primordial star formation to occur at essentially any metallicity by regulating angular momentum transfer, fragmentation, accretion and feedback in much the same way as occurs in conventional molecular clouds.  相似文献   
93.
Recent observations of the binary system LS 5039 with the High Energy Stereoscopic System (H.E.S.S.) revealed that its Very High Energy (VHE) γ-ray emission is modulated at the 3.9 days orbital period of the system. The bulk of the emission is largely confined to half of the orbit, peaking around the inferior conjunction epoch of the compact object. The flux modulation provides the first indication of γ-ray absorption by pair production on the intense stellar photon field. This implies that the production region size must be not significantly greater than the gamma-gamma photosphere size (∼1 AU), thus excluding the large scale collimated outflows or jets (extending out to ∼1000 AU). A hardening of the spectrum is also observed at the same epoch between 0.2 and a few TeV which is unexpected under a pure absorption scenario and could rather arise from variation with phase in the maximum electron energy and/or the dominant VHE γ-ray production mechanism. This first-time observation of modulated γ-ray emission allows precise tests of the acceleration and emission models in binary systems. Mathieu de Naurois for the H.E.S.S. Collaboration.  相似文献   
94.
River bends occasionally meander to the point of cutoff, whereby a river shortcuts itself and isolates a portion of its course. This fundamental process fingerprints a river's long-term planform geometry, its stratigraphic record, and biogeochemical fluxes in the floodplain. Although meander cutoffs are common in fast-migrating channels, timelapse imagery of the Earth surface typically does not offer a long enough baseline for statistically robust analyses of these processes. We seek to bridge this gap by quantifying cutoff kinematics along the Humboldt River (Nevada) – a stream that, from 1994 to 2019, hosted an exceptionally high number of cutoffs (specifically, 174 of the chute type and 53 of the neck type). A coincidence between major floods and cutoff incidence is first suggestive of hydrographic modulation. Moreover, not just higher sinuosity but also upstream planform skewness is associated with higher cutoff incidence and channel widening for a sub-population of chute cutoffs. We propose a conceptual model to explain our results in terms of channel-flow structure and then examine the distances between adjacent cutoffs to understand the mechanisms governing their clustering. We find that both local and nonlocal perturbations together trigger the clustering of new cutoffs, over distances capped by the backwater length and over yearly to decadal timescales. Our research suggests that planform geometry and backwater controls might sway the occurrence of cutoff clusters – both local and nonlocal – thereby offering new testable hypotheses to explore the evolution of meandering-river landscapes that have significant implications for river engineering and stratigraphic modelling. © 2020 John Wiley & Sons, Ltd.  相似文献   
95.
The study of the geochemical compositions and K-Ar or Ar-Ar ages of ca. 350 Neogene and Quaternary lavas from Baja California, the Gulf of California and Sonora allows us to discuss the nature of their mantle or crustal sources, the conditions of their melting and the tectonic regime prevailing during their genesis and emplacement. Nine petrographic/geochemical groups are distinguished: ??regular?? calc-alkaline lavas; adakites; magnesian andesites and related basalts and basaltic andesites; niobium-enriched basalts; alkali basalts and trachybasalts; oceanic (MORB-type) basalts; tholeiitic/transitional basalts and basaltic andesites; peralkaline rhyolites (comendites); and icelandites. We show that the spatial and temporal distribution of these lava types provides constraints on their sources and the geodynamic setting controlling their partial melting. Three successive stages are distinguished. Between 23 and 13 Ma, calc-alkaline lavas linked to the subduction of the Pacific-Farallon plate formed the Comondú and central coast of the Sonora volcanic arc. In the extensional domain of western Sonora, lithospheric mantle-derived tholeiitic to transitional basalts and basaltic andesites were emplaced within the southern extension of the Basin and Range province. The end of the Farallon subduction was marked by the emplacement of much more complex Middle to Late Miocene volcanic associations, between 13 and 7 Ma. Calc-alkaline activity became sporadic and was replaced by unusual post-subduction magma types including adakites, niobium-enriched basalts, magnesian andesites, comendites and icelandites. The spatial and temporal distribution of these lavas is consistent with the development of a slab tear, evolving into a 200-km-wide slab window sub-parallel to the trench, and extending from the Pacific coast of Baja California to coastal Sonora. Tholeiitic, transitional and alkali basalts of subslab origin ascended through this window, and adakites derived from the partial melting of its upper lip, relatively close to the trench. Calc-alkaline lavas, magnesian andesites and niobium-enriched basalts formed from hydrous melting of the supraslab mantle triggered by the uprise of hot Pacific asthenosphere through the window. During the Plio-Quaternary, the ??no-slab?? regime following the sinking of the old part of the Farallon plate within the deep mantle allowed the emplacement of alkali and tholeiitic/transitional basalts of deep asthenospheric origin in Baja California and Sonora. The lithospheric rupture connected with the opening of the Gulf of California generated a high thermal regime associated to asthenospheric uprise and emplaced Quaternary depleted MORB-type tholeiites. This thermal regime also induced partial melting of the thinned lithospheric mantle of the Gulf area, generating calc-alkaline lavas as well as adakites derived from slivers of oceanic crust incorporated within this mantle.  相似文献   
96.
We have produced detailed maps of U and Th isotopes for three cross-sections of an Early Pleistocene equid tooth from the archaeological site of Fuente Nueva-3 (Orce, Andalusia, Spain). This permits us to visualise, for the first time, U migration processes in 3 dimensions. The tooth shows a concentration gradient from the top to the base, indicating the U profile had not equilibrated after >1 Ma. The spatial pattern of 230Th/234U and 234U/238U indicates complex U-mobilisation processes over the last 100 ka, dominated by small-scale redistribution of U. Leaching from the tooth through the pulp cavity started at least 93 ka ago with several later phases in various domains of the dentine and cement. This leaching event could have been triggered by changes in the local hydrological regime associated with periods of increased erosion in the Guadix-Baza basin. The results illustrate the difficulty of dating faunal material from Early Pleistocene sites. They also demonstrate that dental tissues can neither be considered as homogeneous media for U-diffusion, nor behave as closed systems for U-series isotopes because diagenetic alterations seem to trigger U-migration. The results do not support the notion that U-uptake into dental tissues is necessarily of short duration. Nevertheless, rapid laser ablation scanning can be used to identify suitable samples for dating as well as domains within the teeth that may have preserved original isotopic signatures, i.e. domains that have not been affected by recent U-mobilisation process.  相似文献   
97.
The Mt Cameroon volcano is the highest and most active volcano of the Cameroon Volcanic Line. Little geological information is available for improving the understanding of the structure of this large volcanic system and its relationship to regional tectonics. After reviewing the tectonic evolution of the region, the analysis of a Digital Elevation Model and results from a field campaign dedicated to mapping geological structures in the summit area and at the SE base of Mt Cameroon are presented. Mt Cameroon is a lava-dominated volcano with long steep (over 30°) flanks. It is elongate parallel to its well defined rift zone. The summit plateau is bordered by 10 m high cliffs formed by summit subsidence along normal faults. Geological profiles were measured along rivers cutting through a topographic step at the SE base of Mt Cameroon. This step is associated with deformed Miocene sediments from the Douala basin that are overlain by volcanic products. Weak sediments of this area are deformed by 050°–060° and 020°–030° trending asymmetrical folds verging toward the SE, and thrusts faults related to the spreading of the volcano over its mechanically weak substratum. Combined remote sensing and field observations suggest that spreading is accommodated by summit subsidence and flanks sliding. Both slow spreading movements and catastrophic collapses of the steep flanks are interpreted to result from complex interactions between the growing edifice, repeated dyke intrusions, the weak sedimentary substratum and tectonic structures.  相似文献   
98.
The Karakoram–Hindu Kush–Pamir and adjacent Tibetan plateau belt comprise a series of Gondwana‐derived crustal fragments that successively accreted to the Eurasian margin in the Mesozoic as the result of the progressive Tethys ocean closure. These domains provide unique insights into the thermal and structural history of the Mesozoic to Cenozoic Eurasian plate margin, which are critical to inform the initial boundary conditions (e.g. crustal thickness, structure and thermo‐mechanical properties) for the subsequent development of the large and hot Tibetan–Himalaya orogen, and the associated crustal deformation processes. Using a combination of microstructural analyses, thermobarometry modelling and U–Th–Pb monazite and Lu–Hf garnet geochronology, the study reappraises the metamorphic history of exposed mid‐crustal metapelites in the Chitral region of the South Pamir–Hindu Kush (NW Pakistan). This study also demonstrates that trace elements in monazite (especially Y and Dy), combined with thermodynamical modelling and Lu–Hf garnet dating, provides a powerful integrated toolbox for constraining long‐lived and polyphased tectono‐metamorphic histories in all their spatial and temporal complexity. Rocks from the Chitral region were progressively deformed and metamorphosed at sub‐ and supra‐solidus conditions through at least four distinct episodes from the Mesozoic to the Cenozoic. Rocks were first metamorphosed at ~400–500°C and ~0.3 GPa in the Late Triassic–Early Jurassic (210–185 Ma), likely in response to the accretion of the Karakoram during the Cimmerian orogeny. Pressure and temperature subsequently increased by ~0.3 GPa and 100°C in the Early‐ to Mid Cretaceous (140–80 Ma), coinciding with the intrusion of calcalkaline granitic plutons across the Karakoram and Pamir regions. This event is interpreted as the record of crustal thickening and the development of a proto‐plateau within the Eurasian margin due to a long‐lived episode of slab flattening in an Andean‐type margin. Peak metamorphism was reached in the Late Eocene–Early Oligocene (40–30 Ma) at conditions of 580–600°C and ~0.6 GPa and 700–750°C and 0.7–0.8 GPa for the investigated staurolite schists and sillimanite migmatites respectively. This crustal heating up to moderate anatexis likely resulted in the underthrusting of the Indian plate after a NeoTethyan slab‐break off or to the Tethyan Himalaya–Lhasa microcontinent collision and subsequent oceanic slab flattening. Near‐isothermal decompression/exhumation followed in the Late Oligocene (28–23 Ma) as marked by a pressure decrease in excess of ~0.1 GPa. This event was coeval with the intrusion of the 24 Ma Garam Chasma leucogranite. This rapid exhumation is interpreted to be related to the reactivation of the South Pamir–Karakoram suture zone during the ongoing collision with India. The findings of this study confirm that significant crustal shortening and thickening of the south Eurasian margin occurred during the Mesozoic in an accretionary‐type tectonic setting through successive episodes of terrane accretions and probably slab flattening, transiently increasing the coupling at the plate interface. Moreover, they indicate that the south Eurasian margin was already hot and thickened prior to Cenozoic collision with India, which has important implications for orogen‐scale strain‐accommodation mechanisms.  相似文献   
99.
Etna's January 2011 eruption provided an excellent opportunity to test the ability of Meteosat Second Generation satellite's Spinning Enhanced Visible and InfraRed Imager (SEVIRI) sensor to track a short-lived effusive event. The presence of lava fountaining, the rapid expansion of lava flows, and the complexity of the resulting flow field make such events difficult to track from the ground. During the Etna's January 2011 eruption, we were able to use thermal data collected by SEVIRI every 15 min to generate a time series of the syn-eruptive heat flux. Lava discharge waxed over a ~1-h period to reach a peak that was first masked from the satellite view by a cold tephra plume and then was of sufficient intensity to saturate the 3.9-μm channel. Both problems made it impossible to estimate time-averaged lava discharge rates using the syn-eruptive heat flux curve. Therefore, through integration of data obtained by ground-based Doppler radar and thermal cameras, as well as ancillary satellite data (from Moderate Resolution Imaging Spectrometer and Advanced Very High Resolution Radiometer), we developed a method that allowed us to identify the point at which effusion stagnated, to allow definition of a lava cooling curve. This allowed retrieval of a lava volume of ~1.2 × 106 m3, which, if emitted for 5 h, was erupted at a mean output rate of ~70 m3 s−1. The lava volume estimated using the cooling curve method is found to be similar to the values inferred from field measurements.  相似文献   
100.
The strike slip Yammouneh fault is the longest fault in Lebanon, crossing the territory from South to North. It was responsible for major historical earthquakes like the 1202 A.D. earthquake, estimated to Ms7.6. This paper presents a site-specific estimation of the ground motion caused by a potential Mw7.5 earthquake on the Yammouneh fault, similar to the 1202 event, for various sites within the Beirut area. The empirical Green’s function technique EGF is used to estimate the median and the standard deviations of the seismic ground motion at the reference station BHL, taking into account epistemic and aleatory uncertainties related to source parameters. These uncertainties were quantified through a sensitivity analysis of the position of the rupture nucleation Xnuc, the slip roughness parameter K, the corner frequency fc and the magnitude Mc of the EGF. The rock ground motion is then transferred to various other sites within the Beirut area, using instrumental Fourier transfer functions. Site amplification factors are next deduced by computing the ratio between response spectra at sediment sites and at a reference rock station. Considering the limits of the EGF method in the near field of extended sources, the EGF approach is considered only up to a magnitude Mw of 6.5. Selected Ground Motion Predictive Equations are then used to simulate a Mw7.5 event at a reference station. By applying the amplification factors, the response spectra at the different sites of Beirut are also calculated and compared with the actual response spectra used in the Lebanese regulations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号