首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   711篇
  免费   43篇
  国内免费   7篇
测绘学   22篇
大气科学   57篇
地球物理   250篇
地质学   242篇
海洋学   64篇
天文学   74篇
综合类   1篇
自然地理   51篇
  2023年   6篇
  2021年   17篇
  2020年   10篇
  2019年   14篇
  2018年   31篇
  2017年   24篇
  2016年   23篇
  2015年   24篇
  2014年   30篇
  2013年   49篇
  2012年   32篇
  2011年   36篇
  2010年   48篇
  2009年   39篇
  2008年   41篇
  2007年   40篇
  2006年   28篇
  2005年   30篇
  2004年   29篇
  2003年   32篇
  2002年   23篇
  2001年   14篇
  2000年   12篇
  1999年   12篇
  1998年   11篇
  1997年   7篇
  1996年   8篇
  1995年   4篇
  1994年   4篇
  1992年   4篇
  1990年   2篇
  1989年   5篇
  1988年   2篇
  1987年   10篇
  1986年   5篇
  1985年   5篇
  1984年   4篇
  1983年   5篇
  1982年   2篇
  1981年   5篇
  1980年   5篇
  1979年   3篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   4篇
  1973年   2篇
  1971年   2篇
  1907年   1篇
排序方式: 共有761条查询结果,搜索用时 20 毫秒
101.
The present study investigates hydrocarbon oxidation processes at Isis and Amon mud volcanoes (MV’s), in the eastern Nile deep-sea fan. In the water column, molecular and carbon isotopic signatures of light hydrocarbons indicate that gases rapidly dissolve in seawater and are partially oxidized.In the upper sediments, anaerobic oxidation of the light hydrocarbons takes place, as clearly shown by their molecular and isotopic composition. These processes lead to the presence of a distinct Sulfate-Hydrocarbon Interface at 120-145 cm and 20-50 cm below the seafloor, for Isis and Amon MV’s, respectively. In contrast to processes occurring in the water column, a clear preferential oxidation of methane, propane and n-butane over ethane and i-butane is observed in the anoxic sediments. Furthermore, for the first time, fractionation factors have been determined for the anaerobic oxidation of propane and butane, being respectively −4.80‰ and −0.7‰ for δ13C, and −43.3‰ for δ2H of propane.  相似文献   
102.
We present three-dimensional unsteady modeling and numerical simulations of a coronal active region, carried out within the compressible single-fluid MHD approximation. We focus on AR 9077 on 14 July 2000, and the triggering of the X5.7 GOES X-ray class “Bastille Day” flare. We simulate only the lower corona, although we include a virtual photosphere and chromosphere below. The boundary conditions at the base of this layer are set using temperature maps from line intensities and line-of-sight magnetograms (SOHO/MDI). From the latter, we generate vector magnetograms using the force-free approximation; these vector magnetograms are then used to produce the boundary condition on the velocity field using a minimum energy principle (Longcope, Astrophys. J. 612, 1181, 2004). The reconnection process is modeled through a dynamical hyper-resistivity which is activated when the current exceeds a critical value (Klimas et al., J. Geophys. Res. 109, 2218, 2004). Comparing the time series of X-ray fluxes recorded by GOES with modeled time series of various mean physical variables such as current density, Poynting energy flux, or radiative loss inside the active region, we can demonstrate that the model properly captures the evolution of an active region over a day and, in particular, is able to explain the initiation of the flare at the observed time.  相似文献   
103.
Electromagnetic (EM) investigation depths are larger on Venus than Earth due to the dearth of water in rocks, in spite of higher temperatures. Whistlers detected by Venus Express proved that lightning is present, so the Schumann resonances ~10–40 Hz may provide a global source of electromagnetic energy that penetrates ~10–100 km. Electrical conductivity will be sensitive at these depths to temperature structure and hence thermal lithospheric thickness. Using 1D analytic and 2D numerical models, we demonstrate that the Schumann resonances—transverse EM waves in the ground-ionosphere waveguide—remain sensitive at all altitudes to the properties of the boundaries. This is in marked contrast to other EM methods in which sensitivity to the ground falls off sharply with altitude. We develop a 1D analytical model for aerial EM sounding that treats the electrical properties of the subsurface (thermal gradient, water content, and presence of conductive crust) and ionosphere, and the effects of both random errors and biases that can influence the measurements. We initially consider specified 1D lithospheric thicknesses 100–500 km, but we turn to 2D convection models with Newtonian temperature-dependent viscosity to provide representative vertical and lateral temperature variations. We invert for the conductivity-depth structure and then temperature gradient. For a dry Venus, we find that the error on temperature gradient obtained from any single local measurement is ~100%—perhaps enough to distinguish “thick” vs. “thin” lithospheres. When averaging over thousands of kilometers, however, the standard deviation of the recovered thermal gradient is within the natural variability of the convection models, <25%. A “wet” interior (hundreds of ppm H2O) limits EM sounding depths using the Schumann resonances to <20 km, and errors are too large to estimate lithospheric properties. A 30-km conductive crust has little influence on the dry-interior models because the Schumann penetration depths are significantly larger. We conclude that EM sounding of the interior of Venus is feasible from a 55-km high balloon. Lithospheric thickness can be measured if the upper-mantle water content is low. If H2O at hundreds of ppm is present, the deeper, temperature-sensitive structure is screened, but the “wet” nature of the upper mantle, as well as structure of the upper crust, is revealed.  相似文献   
104.
Ice divide–dome behaviour is used for ice sheet mass balance studies and interpretation of ice core records. In order to characterize the historical behaviour (last 400 yr) of Dome C and Talos Dome (East Antarctica), ice velocities have been measured since 1996 using a GPS system, and the palaeo-spatial variability of snow accumulation has been surveyed using snow radar and firn cores. The snow accumulation distribution of both domes indicates distributions of accumulation that are non-symmetrical in relation to dome morphology. Changes in spatial distributions have been observed over the last few centuries, with a decrease in snow accumulation gradient along the wind direction at Talos Dome and a counter-clockwise rotation of accumulation distribution in the northern part of Dome C. Observations at Dome C reveal a significant increase in accumulation since the 1950s, which could correlate to altered snow accumulation patterns due to changes in snowfall trajectory. Snow accumulation mechanisms are different at the two domes: a wind-driven snow accumulation process operates at Talos Dome, whereas snowfall trajectory direction is the main factor at Dome C. Repeated GPS measurements made at Talos Dome have highlighted changes in ice velocity, with a deceleration in the NE portion, acceleration in the SW portion and migration of dome summit, which are apparently correlated with changes in accumulation distribution. The observed behaviour in accumulation and velocity indicates that even the most remote areas of East Antarctica have changed from a decadal to secular scale.  相似文献   
105.
We have studied the sublimation of ice and water vapor transport through various thicknesses of clay (<63 μm grain size). We experimentally demonstrate that both adsorption and diffusion strongly affect the transport of water, and that the processes of diffusion and adsorption can be separately quantified once the system comes to a steady state. At shallow depths of clay, water vapor transport is determined by diffusion through both the atmosphere and the clay layer, whereas at greater depth the rate of sublimation of the ice is governed only by diffusion through the clay. Using two different models, we determine the diffusion coefficient for water vapor through unconsolidated clay layer to be 1.08±0.04×10−4 and . We also determined the adsorption isotherms for the clay layer, which follow the Langmuir theory at low water vapor pressure (<100 Pa, where a monolayer of water molecules forms on the surface of the clay) and the BET theory at higher pressure (where multiple water layers form). From our analysis of both types of isotherms we determined the adsorption constants to be and c=30±10, respectively, and specific surface areas of 1.10±0.2×105 and , respectively. Finally, we report a theoretical kinetic model for the simultaneous diffusion and adsorption from which we determine adsorption kinetic constants according to the Langmuir theory of and . If the martian regolith possesses diffusive properties similar to those of the unconsolidated montmorillonite soil we investigated here, it would not represent a significant barrier to the sublimation of subsurface ice. However, at the low subsurface temperatures of high latitude (180 K on average), ice could survive from the last glaciation period (about 300 to 400,000 years ago). Higher subsurface temperatures in the equatorial regions would prevent long-timescale survival of ice in the shallow subsurface. In agreement with previous work, we show that adsorption of water by a clay regolith could provide a significant reservoir of subsurface water and it might account for the purported diurnal cycle in the water content of the atmosphere.  相似文献   
106.
To analyze the grain size and depositional environment of the foreshore sediments, a study was undertaken on wave refraction along the wide sandy beaches of central Tamil Nadu coast. The nearshore waves approach the coast at 45° during the northeast(NE) monsoon, at 135° during the southwest(SW) monsoon and at 90° during the non-monsoon or fair-weather period with a predominant wave period of 8 and 10 s. A computer based wave refraction pattern is constructed to evaluate the trajectories of shoreward propagating waves along the coast in different seasons. The convergent wave rays during NE monsoon, leads to high energy wave condition which conveys a continuous erosion at foreshore region while divergent and inept condition of rays during the SW and non-monsoon, leads to moderate and less energy waves that clearly demarcates the rebuilt beach sediments through littoral sediment transport. The role of wave refraction in foreshore deposits was understood by grain size and depositional environment analysis. The presence of fine grains with the mixed population, during the NE monsoon reveals that the high energy wave condition and sediments were derived from beach and river environment. Conversely, the presence of medium grains with uniform population, during SW and non-monsoon attested less turbulence and sediments were derived from prolong propagation of onshore-offshore wave process.These upshots are apparently correlated with the in situ beach condition. On the whole, from this study it is understood that beaches underwent erosion during the NE monsoon and restored its original condition during the SW and non-monsoon seasons that exposed the stability of the beach and nearshore condition.  相似文献   
107.
108.
The urban heat island (UHI) is a well-documented effect of urbanization on local climate, identified by higher temperatures compared to surrounding areas, especially at night and during the warm season. The details of a UHI are city-specific, and microclimates may even exist within a given city. Thus, investigating the spatiotemporal variability of a city’s UHI is an ongoing and critical research need. We deploy ten weather stations across Knoxville, Tennessee, to analyze the city’s UHI and its differential impacts across urban neighborhoods: two each in four neighborhoods, one in more dense tree cover and one in less dense tree cover, and one each in downtown Knoxville and Ijams Nature Center that serve as control locations. Three months of temperature data (beginning 2 July 2014) are analyzed using paired-sample t tests and a three-way analysis of variance. Major findings include the following: (1) Within a given neighborhood, tree cover helps negate daytime heat (resulting in up to 1.19 °C lower maximum temperature), but does not have as large of an influence on minimum temperature; (2) largest temperature differences between neighborhoods occur during the day (0.38–1.16 °C difference), but larger differences between neighborhoods and the downtown control occur at night (1.04–1.88 °C difference); (3) presiding weather (i.e., air mass type) has a significant, consistent impact on the temperature in a given city, and lacks the differential impacts found at a larger-scale in previous studies; (4) distance from city center does not impact temperature as much as land use factors. This is a preliminary step towards informing local planning with a scientific understanding of how mitigation strategies may help minimize the UHI and reduce the effects of extreme weather on public health and well-being.  相似文献   
109.
Persistent inorganic constitutents preserved in sediments of aquatic ecosystems record temporal variability of biogeochemical functioning and anthropogenic impacts.210Pb and137Cs dating techniques were used to study the past variations of heavy metals (Pb, Cu, and Zn) and accumulation rates of sediments for Tivoli South Bay, in the Hudson River National Estuarine Research Reserve ecosystem. South Bay, a tidal freshwater embayment of the Hudson, may play an important role in the sediment dynamics of this important river. The measured sedimentation rate range of 0.59 to 2.92 cm yr−1 suggests that rapid accumulation occurred during the time period represented by the length of the cores (approximately the past 50 yr). Direct measurements of sediment exchange with the Hudson River reveal high variability in the sediment flux from one tidal cycle to the next. Net exchange does not seem to be adequate to explain sediment accumulation rates in the bay as measured by210Pb and137Cs. The difference may be supplied from upland streams or the Hudson River during storm events. Concentrations of the metals Pb, Cu and Zn were found to be well correlated with each other within individual cores at five of six sites tested. This suggests a common proximate source for the three metals at a specific site. The evidence is consistent with mixing in some environmental compartment before delivery to the bay. While metals self-correlate within individual cores, absolute concentrations, depth distribution patterns, and ratios of the metals to each other vary among the cores collected at different locations within the bay. Organic matter, Fe content, and particle size distribution of sediments do not account for the intercore variations in metal concentration. It is likely that cores collected from different sites may have derived metals from different sources, such as watershed streams and tidal exchange with the Hudson River.  相似文献   
110.
2008年MW7.9汶川地震导致龙门山断裂发生强烈地壳变形,同时引发的巨量同震滑坡加速了该地区的地表剥蚀和河流侵蚀.然而,目前尚缺少系统的数据定量研究滑坡物质的运移以及河流侵蚀速率随时间的演化规律,这些对理解龙门山前缘物质的再分配以及强震对活动造山带地形塑造的作用至关重要.为此,本研究在汶川地震后的6年间,对震区沱江上游3条支流湔江、石亭江、绵远河流域进行了多期次的定点现代河沙采样.通过系统测量河沙中的石英10Be浓度,并与震前已发表的数据进行对比,发现如下基本特点:(1)震后河沙10Be浓度均有明显降低,表明同震滑坡物质对河沙的稀释作用;(2)震后河流对河沙的运移量增加为震前的1.3~18.5倍,因此震后龙门山地区侵蚀速率短期显著增加;(3)初步估计得到汶川地震产生的滑坡物质被完全运移出造山带所需要的时间至少为100~4000年,接近龙门山地区强震复发周期;(4)震间和同震产生的构造变形和地表剥蚀在空间上具有互补性.考虑到地表剥蚀引起的地壳均衡反弹效应,认为类似汶川地震的强震有利于龙门山的隆升.认识震前、震时和震后的地壳变形及侵蚀过程有助于更好地理解单次强震事件对高原边界龙门山地形演化的作用.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号