首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   15篇
测绘学   2篇
大气科学   26篇
地球物理   61篇
地质学   70篇
海洋学   15篇
天文学   21篇
自然地理   9篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   12篇
  2016年   4篇
  2015年   8篇
  2014年   5篇
  2013年   10篇
  2012年   4篇
  2011年   16篇
  2010年   9篇
  2009年   7篇
  2008年   8篇
  2007年   5篇
  2006年   8篇
  2005年   9篇
  2004年   7篇
  2003年   7篇
  2002年   7篇
  2001年   4篇
  2000年   2篇
  1999年   4篇
  1998年   3篇
  1997年   3篇
  1995年   5篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
  1973年   2篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1945年   1篇
  1937年   1篇
  1930年   1篇
  1927年   2篇
  1920年   2篇
  1918年   1篇
  1915年   2篇
排序方式: 共有204条查询结果,搜索用时 296 毫秒
91.
92.
Coastal polynyas around Antarctica are the place of intense air–sea exchanges which eventually lead to the formation of high-salinity shelf waters (HSSW) over continental shelves. Here, the influence of atmospheric forcing on coastal polynyas in the Ross Sea is studied by contrasting the response of a regional ocean/sea-ice circulation model to two different atmospheric forcing sets. A first forcing (DFS3) is based on ERA40 atmospheric surface variables and satellite products. A second forcing (MAR) is produced on the basis of ERA40 with a dynamical downscaling procedure. As compared to DFS3, MAR forcing is shown to improve substantially the representation of small-scale patterns of coastal winds with stronger katabatic winds along the coast. The response of the ocean/sea-ice model to the two forcing sets shows that the MAR forcing improves substantially the geographical distribution of polynyas in the Ross Sea. With the MAR forcing, the polynya season is also shown to last longer with a greater ice-production rate. As a consequence, a greater flow of dense water out of the polynyas is found with the MAR forcing and the properties of HSSW are notably improved as compared to the DFS3 forcing. The factors contributing to the activity of Terra Nova Bay and Ross Ice Shelf polynyas in the model are studied in detail. The general picture that emerges from our simulations is that the properties of HSSW are mostly set by brine rejection when the polynya season resume. We found that coastal polynyas in the Ross Sea export about 0.4 Sv of HSSW which then flows along three separate channels over the Ross Shelf. A 6-month time lag is observed between the peak of activity of polynyas and the maximum transport across the sills in the channels with a maximum transport of about 1 Sv in February. This lag corresponds to the time it takes to the newly formed HSSW to spread from the polynya to the sills (at a speed of nearly 2 cm s−1).  相似文献   
93.
A two-dimensional equation governing the steady state spatial concentration distribution of a reactive constituent within a heterogeneous advective–dispersive flow field is solved analytically. The solution which is developed for the case of a single point source can be generalized to represent analogous situations with any number of separate point sources. A limiting case of special interest has a line source of constant concentration spanning the domain’s upstream boundary. The work has relevance for improving understanding of reactive transport within various kinds of advection-dominated natural or engineered environments including rivers and streams, and bioreactors such as treatment wetlands. Simulations are used to examine quantitatively the impact that transverse dispersion (deviations from purely stochastic-convective flow) can have on mean concentration decline in the direction of flow. Results support the contention that transverse mixing serves to enhance the overall rate of reaction in such systems.  相似文献   
94.
Knowledge of river gain from or loss to a hydraulically connected water table aquifer is crucial in issues of water rights and also when attempting to optimize conjunctive use of surface and ground waters. Typically in groundwater models this exchange flow is related to a difference in head between the river and some point in the aquifer, through a “coefficient.” This coefficient has been defined differently as well as the location for the head in the aquifer. This paper proposes a new coefficient, analytically derived, and a specific location for the point where the aquifer head is used in the difference. The dimensionless part of the coefficient is referred to as the SAFE (stream‐aquifer flow exchange) dimensionless conductance. The paper investigates the factors that influence the value of this new conductance. Among these factors are (1) the wetted perimeter of the cross‐section, (2) the degree of penetration of the cross‐section, and (3) the shape of the cross‐section. The study shows that these factors just listed are indeed ordered in their respective level of importance. In addition the study verifies that the analytical correct value of the coefficient is matched by finite difference simulation only if the grid system is sufficiently fine. Thus the use of the analytical value of the coefficient is an accurate and efficient alternative to ad hoc estimates for the coefficient typically used in finite difference and finite element methods.  相似文献   
95.
The history of the determination of the Earth's age is interesting in two ways. First, it is a great school for understanding the genesis of a scientific theory. It stands at the crossroads of almost all scientific disciplines, and also philosophy or even theology. This history shows how what one may well call a “scientific truth” was established through polemics. Second, that age of 4.567 billion years is not just another figure in the series of ages that would be of concern only to astrophysicists; this scale is the only one that makes it possible to understand the genesis of the marvelous order of the solar system (that Newton attributed to God) and the fantastic complexity of Life on Earth.  相似文献   
96.
A detailed field study was carried out on a tidal bore to document the turbulent processes and sediment entrainment which occurred. The measured bore, within the Arcins Channel of the Garonne River (France), was undular in nature and was followed by well‐defined secondary wave motion. Due to the local river geometry a collision between the Arcins channel tidal bore and the bore which formed within the main Garonne River channel was observed about 800 m upstream of the sampling site. This bore collision generated a transient standing wave with a black water mixing zone. Following this collision the bore from the main Garonne River channel propagated ‘backward’ to the downstream end of the Arcins channel. Velocity measurements with a fine temporal resolution were complemented by measurements of the sediment concentration and river level. The instantaneous velocity data indicated large and rapid fluctuations of all velocity components during the tidal bore. Large Reynolds shear stresses were observed during and after the tidal bore passage, including during the 'backward' bore propagation. Large suspended sediment concentration estimates were recorded and the suspended sediment flux data showed some substantial sediment motion, consistent with the murky appearance of the flood tide waters. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
97.
98.
Biocultural systems adapt to global climate change through its regional manifestations. Subsistence customs are the cultural interface between regional climate and culture at large. Swidden horticulturalists in Campeche, Mexico report that dry April followed by early onset of the wet season enhances the productivity of upland tropical gardens, or milpas. To relate regional seasonality of moisture to global climate, growing season discharge for Mexico's Candelaria River from 1958 to 1990 was analyzed relative to global average temperature. Analysis of covariance revealed a statistically significant relationship (p < 0.001). Further analysis showed that hot global climate eliminates the dry season, which lowers milpa productivity by preventing burning of the slash. Cold global climate delays the wet season and planting, also at cost of productivity. Intermediate global temperature fosters optimal wet—dry season combinations. Productivity of milpas is therefore directly related to global climate through the intervening mechanism of seasonality of moisture. A regression model reflecting these findings is used to retrodict paleohydrology for the last 3000 years. The pattern of ascendancy and decline of ancient southern Maya lowland urban centers is reviewed in the perspective of changing hydrological conditions. The model indicates that fluorescence occurred with optimal balance of wet and dry season duration and catastrophes unfolded during extended wet or dry periods. We suggest that the southern Maya lowlands have had a precipitous record of urban development and collapse in part because of complex interactions of global climate and upland horticulture. The most productive conditions for milpa issue from an inherently unstable overlay of global climate on a relatively narrow band of partially developed karst (semikarst) geological formations.  相似文献   
99.
Flow exchange between surface and groundwater is of great importance be it for beneficial allocation and use of water resources or for the proper exercise of water rights. In large‐scale regional studies, most numerical models use coarse grid sizes, which make it difficult to provide an accurate depiction of the phenomenon. In particular, a somewhat arbitrary leakance coefficient in a third type (i.e., Cauchy, General Head) boundary condition is used to calculate the seepage discharge as a function of the difference of head in the river and in the aquifer, whose value is often found by calibration. A different approach is presented to analytically estimate that leakance coefficient. It is shown that a simple equivalence can be deduced from the analytical solution for the empirical coefficient, so that it provides the accuracy of the analytical solution while the model maintains a very coarse grid, treating the water‐table aquifer as a single calculation layer. Relating the empirical leakance coefficient to the exact conductance, derived from physical principles, provides a physical basis for the leakance coefficient. Factors such as normalized wetted perimeter, degree of penetration of the river, presence of a clogging layer, and anisotropy can be included with little computational demand. In addition the river coefficient in models such as MODFLOW, for example, can be easily modified when grid size is changed without need for recalibration.  相似文献   
100.
Understanding how explicit consideration of topographic information influences hydrological model performance and upscaling in glacier dominated catchments remains underexplored. In this study, the Urumqi glacier no. 1 catchment in northwest China, with 52% of the area covered by glaciers, was selected as study site. A conceptual glacier‐hydrological model was developed and tested to systematically, simultaneously, and robustly reproduce the hydrograph, separate the discharge into contributions from glacier and nonglacier parts of the catchment, and establish estimates of the annual glacier mass balance, the annual equilibrium line altitude, and the daily catchment snow water equivalent. This was done by extending and adapting a recently proposed landscape‐based semidistributed conceptual hydrological model (FLEX‐Topo) to represent glacier and snowmelt processes. The adapted model, FLEXG, allows to explicitly account for the influence of topography, that is, elevation and aspect, on the distribution of temperature and precipitation and thus on melt dynamics. It is shown that the model can not only reproduce long‐term runoff observations but also variations in glacier and snow cover. Furthermore, FLEXG was successfully transferred and up‐scaled to a larger catchment exclusively by adjusting the areal proportions of elevation and aspect without the need for further calibration. This underlines the value of topographic information to meaningfully represent the dominant hydrological processes in the region and is further exacerbated by comparing the model to a model formulation that does not account for differences in aspect (FLEXG,nA) and which, in spite of satisfactorily reproducing the observed hydrograph, does not capture the influence of spatial variability of snow and ice, which as a consequence reduces model transferability. This highlights the importance of accounting for topography and landscape heterogeneity in conceptual hydrological models in mountainous and snow‐, and glacier‐dominated regions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号