首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   353篇
  免费   20篇
  国内免费   13篇
测绘学   18篇
大气科学   22篇
地球物理   117篇
地质学   180篇
海洋学   10篇
天文学   14篇
综合类   5篇
自然地理   20篇
  2023年   2篇
  2022年   10篇
  2021年   11篇
  2020年   30篇
  2019年   19篇
  2018年   40篇
  2017年   37篇
  2016年   42篇
  2015年   23篇
  2014年   25篇
  2013年   30篇
  2012年   30篇
  2011年   24篇
  2010年   16篇
  2009年   8篇
  2008年   6篇
  2007年   6篇
  2006年   8篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2000年   2篇
  1996年   1篇
  1993年   1篇
  1991年   1篇
  1989年   3篇
  1988年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有386条查询结果,搜索用时 877 毫秒
41.
Theoretical and Applied Climatology - Land use change is an important determinant of hydrological processes and is known to affect hydrological parameters such as runoff volume, flood frequency,...  相似文献   
42.
The present paper is an attempt to integrate a semi-automated object-based image analysis (OBIA) classification framework and a cellular automata-Markov model to study land use/land cover (LULC) changes. Land use maps for the Sarab plain in Iran for the years 2000, 2006, and 2014 were created from Landsat satellite data, by applying an OBIA classification using the normalized difference vegetation index, salinity index, moisture stress index, soil-adjusted vegetation index, and elevation and slope indicators. The classifications yielded overall accuracies of 91, 93, and 94% for 2000, 2006, and 2014, respectively. Finally, using the transition matrix, the spatial distribution of land use was simulated for 2020. The results of the study revealed that the number of orchards with irrigated agriculture and dry-farm agriculture in the Sarab plain is increasing, while the amount of bare land is decreasing. The results of this research are of great importance for regional authorities and decision makers in strategic land use planning.  相似文献   
43.
Alluvial fans are one of the most important landforms in geomorphological and paloenvironmental studies. The objective of this study was the application of clay mineral assemblages and micromorphological properties of the studied paleosols in the geomorphic surfaces of an alluvial fan in the eastern Isfahan as proxies for paleoenvironmental and paleoclimatic changes. Micromorphology, X-ray diffraction, and scanning electron microscopy approaches were used to study the representative pedons. The results indicated that the illuviation process in the calcareous soils of the arid regions of the eastern Isfahan was probably in response to Quaternary moist conditions. There was no significant difference between clay coating properties of the studied relict and buried paleosols. Clay mineralogical study suggested that kaolinite and illite were inherited from the parent materials, while smectite and palygorskite were formed in the soil environment. Paleoargillic horizon was characterized by smectite and calcic (especially the calcrete) horizons were dominated by palygorskite. Palygorskite was accumulated by both neoformation and illuviation processes. High clay content, high intensity of smectite peak, and activity of the illuviation process in paleoargillic horizon demonstrated the seasonality of climate (rainfall) even in the moist periods of Quaternary in Central Iran. Clay mineralogical assemblages suggested a trend of increasing environmental aridity in the study area. This study, therefore, highlighted the role of clay mineralogical investigations in arid lands’ geomorphological and paleoenvironmental researches.  相似文献   
44.
A geomechanical model can reveal the mechanical behavior of rocks and be used to manage the reservoir programs in a better mode. Fluid pressure will be reduced during hydrocarbon production from a reservoir. This reduction of pressure will increase the effective stress due to overburden sediments and will cause porous media compaction and surface subsidence. In some oil fields, the compacting reservoir can support oil and gas production. However, the phenomena can also cause the loss of wells and reduced production and also cause irreparable damage to the surface structures and affect the surrounding environment. For a detailed study of the geomechanical behavior of a hydrocarbon field, a 3D numerical model to describe the reservoir geomechanical characteristics is essential. During this study, using available data and information, a coupled fluid flow-geomechanic model of Fahlian reservoir formation in X-field in SW of Iran was constructed to estimate the amount of land subsidence. According to the prepared model, in this field, the maximum amount of the vertical stress is 110 MPa and the maximum amount of the horizontal stress is 94 MPa. At last, this model is used for the prediction of reservoir compaction and subsidence of the surface. The maximum value of estimated ground subsidence in the study equals to 29 mm. It is considered that according to the obtained values of horizontal and vertical movement in the wall of different wells, those movements are not problematic for casing and well production and also the surrounding environment.  相似文献   
45.
Headcut is a change in stream channel elevation, where there is concentrated flow. Most of the past studies focus on non-cohesive soils, although many problems on the streams occur because of cohesive beds and banks. In this study, eight samples of cohesive soils, with a different composition of silt and clay, for different waterfall heights and flow velocity under long- and short-term natural consolidation conditions were tested. In one of the tests, a sand layer was settled on the headcut bed to investigate its impact on headcut erosion. By increasing clay content, the headcut will remain vertical as it moves backward. Result showed that the effect of clay content reduction was more noticeable under the long-term consolidation condition. In general, the effect of clay percentage variation on the measured parameters is much higher than the effects of waterfall height or flow velocity, and the effect of consolidation type and adding a sand layer on the measured values is much higher than the effect of clay percentage variation on the waterfall height and flow velocity.  相似文献   
46.
Temporal changes of meteorological variables can affect reference evapotranspiration (ET0). The goal of the present research is to analyze the changes of ET0 and identify the impact of effective meteorological parameters to the changes of ET0. For this purpose, daily meteorological data recorded in 30 synoptic stations of Iran during 1960–2014 were used. The annual and seasonal values of ET0 were calculated by the recorded data. To calculate ET0, FAO56 Penman–Monteith method (standard method) was used. The annual and seasonal trends of ET0 and its eight effective parameters were analyzed. Then the contributions of effective parameters changes on ET0 were determined. To analyze ET0 trend at annual and seasonal scales, two common methods, Spearman’s Rho and Mann–Kendall tests, were used. The R 2 = 0.99 showed that the results of the mentioned methods were similar and on the basis of T-statistic <0.057, their difference was not significant (95% confidence level). Therefore, only one method’s results (Spearman’s Rho) were reported. On the basis of Spearman’s Rho results, the annual and seasonal values of ET0 had negative trend in most of arid and semi-arid stations while the trend of this parameter was positive in humid and very humid stations. At annual and seasonal scales, decreasing in wind speed (W), temperature (T), sunshine hours (n), minimum temperature (TN), dew point temperature (TD), maximum temperature (TX), saturation vapor pressure deficit (SVPD) and solar radiation (RS) was observed in 58, 54, 39, 43, 56, 65, 65 and 37% studied stations, respectively. In many scales, the results showed that TX and W were the most effective meteorological variables on ET0 changes and then SVPD was located in second step in arid and semi-arid stations. In humid and very humid stations, W was the first effective parameter at all scales, except autumn.  相似文献   
47.
Geostatistical optimization in designing infill boreholes is an important cost-effective approach in increasing the accuracy of the tonnage and grade of an ore deposit. In this research, a new approach is proposed to design the optimum infill directional boreholes. In the proposed approach, the Kriging estimation variance is considered as the objective function and the number and properties of the optimum boreholes are estimated to minimize the objective function. The optimization procedure is implemented by Particle Swarm Optimization (PSO) algorithm. Range of the spatial and directional properties of new boreholes is determined by considering the primary information of the mineralization and administrative constraint of drilling. Then, the PSO algorithm is iteratively applied, and in each iteration, the variation of the estimated Kriging variance after drilling the new boreholes is determined and properties of the new boreholes are updated. The iterative procedure of the algorithm is continued until minimum Kriging variance is satisfied. The approach was applied to the Dalli Cu-Au porphyry deposit in Iran and three new infill directional boreholes were designed by considering six earlier boreholes from the preliminary exploration stage. New optimum boreholes were located where less information from the preliminary exploration stage exists and the highest variance is considered. Two new boreholes are near to vertical (78°) and the third is an inclined with 55° dip. By drilling these three new boreholes, the estimated grade model could be upgraded by 20%. For simplicity, quickness and the ability to search for the required numbers and specifications of a group of directional boreholes in a 3D environment are the most advantages aspects of the proposed approach.  相似文献   
48.
The M w 3.2-induced seismic event in 2006 due to fluid injection at the Basel geothermal site in Switzerland was the starting point for an ongoing discussion in Europe on the potential risk of hydraulic stimulation in general. In particular, further development of mitigation strategies of induced seismic events of economic concern became a hot topic in geosciences and geoengineering. Here, we present a workflow to assess the hazard of induced seismicity in terms of occurrence rate of induced seismic events. The workflow is called Forward Induced Seismic Hazard Assessment (FISHA) as it combines the results of forward hydromechanical-numerical models with methods of time-dependent probabilistic seismic hazard assessment. To exemplify FISHA, we use simulations of four different fluid injection types with various injection parameters, i.e. injection rate, duration and style of injection. The hydromechanical-numerical model applied in this study represents a geothermal reservoir with preexisting fractures where a routine of viscous fluid flow in porous media is implemented from which flow and pressure driven failures of rock matrix and preexisting fractures are simulated, and corresponding seismic moment magnitudes are computed. The resulting synthetic catalogues of induced seismicity, including event location, occurrence time and magnitude, are used to calibrate the magnitude completeness M c and the parameters a and b of the frequency-magnitude relation. These are used to estimate the time-dependent occurrence rate of induced seismic events for each fluid injection scenario. In contrast to other mitigation strategies that rely on real-time data or already obtained catalogues, we can perform various synthetic experiments with the same initial conditions. Thus, the advantage of FISHA is that it can quantify hazard from numerical experiments and recommend a priori a stimulation type that lowers the occurrence rate of induced seismic events. The FISHA workflow is rather general and not limited to the hydromechanical-numerical model used in this study and can therefore be applied to other fluid injection models.  相似文献   
49.
A sensitive, reliable, and environmentally friendly method for simple separation and preconcentration of Ag(I) traces in aqueous samples is presented prior to their flame atomic absorption spectrometric determinations. At pH 7.0, Ag(I) was separated with 2‐(2‐methoxyphenyl)benzimidazole (MPBI) as a new complexing agent and floated after adding sodium dodecyl sulfate (SDS) as a foaming reagent. The floated layer was then dissolved in proper amount of concentrated nitric acid in methanol and introduced to the flame atomic absorption spectrometer (FAAS). The effects of pH, concentration of MPBI, type and amount of surfactant as the floating agent, type and amount of eluting agent, and influence of foreign ions on the recovery of the analyte ion were investigated. Also, using a nonlinear curve fitting method, the formation constant of 1.62 × 106 was obtained for Ag(I)–MPBI complex. The analytical curve was linear in the range of 1.8 × 10?7–1.7 × 10?6 mol/L for determination of Ag(I). The relative standard deviation (RSD; N = 10) corresponding to 0.7 × 10?6 mol/L of Ag(I), the limit of detection (10 blanks), and the enrichment factor were obtained as 1.7%, 2.9 × 10?8 mol/L, and 43.0, respectively. The proposed procedure was then applied successfully for determination of silver ions in different water samples.  相似文献   
50.
We develop a new method of using feed-forward back-propagation (FFBP) neural networks to simultaneously estimate shape factor and depth of gravity anomalies. The advantages compared to neural network methods are the following: no pre-assumptions are made on source shape, the FFBP neural network estimates both depth and shape factor of source bodies and, once trained, works well for any new data in the training space, without repeating the initial calculations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号