首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   402篇
  免费   20篇
  国内免费   3篇
测绘学   11篇
大气科学   27篇
地球物理   103篇
地质学   111篇
海洋学   29篇
天文学   113篇
综合类   1篇
自然地理   30篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   9篇
  2019年   3篇
  2018年   3篇
  2017年   10篇
  2016年   9篇
  2015年   10篇
  2014年   9篇
  2013年   13篇
  2012年   19篇
  2011年   13篇
  2010年   15篇
  2009年   35篇
  2008年   17篇
  2007年   19篇
  2006年   21篇
  2005年   16篇
  2004年   13篇
  2003年   12篇
  2002年   8篇
  2001年   11篇
  2000年   6篇
  1999年   5篇
  1998年   6篇
  1997年   4篇
  1996年   8篇
  1995年   9篇
  1994年   2篇
  1993年   4篇
  1991年   3篇
  1990年   3篇
  1988年   6篇
  1987年   5篇
  1986年   6篇
  1985年   6篇
  1984年   7篇
  1983年   8篇
  1982年   2篇
  1981年   8篇
  1980年   6篇
  1979年   7篇
  1978年   7篇
  1977年   6篇
  1976年   4篇
  1975年   8篇
  1974年   4篇
  1973年   5篇
  1971年   2篇
排序方式: 共有425条查询结果,搜索用时 187 毫秒
81.
Abstract— Metal nodules are one of the major textural components of Kaidun sample #01.3.06 EH3-4. In terms of structure, the nodules are of three types: (1) globular, (2) zoned with a massive core and globular mantle, and (3) nodules with no internal structure. The size and composition of the globules in the nodules and grains of metal of the matrix are almost identical: no greater than 20 μm and Ni, 5.95; Si, 3.33 wt%. The nodules contain small (usually <5 μm) inclusions of SiO2; albitic glass; enstatite; roedderite; and a mixture of SiO2 and Na2S2. This is the first reported occurrence of a simple sulfide of an alkaline metal in nature. The formation of the inclusions appears to be related to condensation of material onto the surfaces of metal grains. The nodules appear to have formed by aggregation of separate grains (globules) of metal, with conservation of condensates on the grain surfaces as inclusions. The inclusions probably condensed over a significant temperature range from 1400 to 600 K. The aggregation of metal grains and formation of the nodules probably occurred simultaneously with condensation.  相似文献   
82.
83.
Hydrocarbon mixtures too complex to resolve by traditional capillary gas chromatography display gas chromatograms with dramatically rising baselines or “humps” of coeluting compounds that are termed unresolved complex mixtures (UCMs). Because the constituents of UCMs are not ordinarily identified, a large amount of geochemical information is never explored. Gas chromatograms of saturated/unsaturated hydrocarbons extracted from Late Archean argillites and greywackes of the southern Abitibi Province of Ontario, Canada contain UCMs with different appearances or “topologies” relating to the intensity and retention time of the compounds comprising the UCMs. These topologies appear to have some level of stratigraphic organization, such that samples collected at any stratigraphic formation collectively are dominated by UCMs that either elute early- (within a window of C15–C20 n-alkanes), early- to mid- (C15–C30 n-alkanes), or have a broad UCM that extends through the entire retention time of the sample (from C15–C42 n-alkanes). Comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC–MS) was used to resolve the constituents forming these various UCMs. Early- to mid-eluting UCMs are dominated by configurational isomers of alkyl-substituted and non-substituted polycyclic compounds that contain up to six rings. Late eluting UCMs are composed of C36–C40 mono-, bi-, and tricyclic archaeal isoprenoid diastereomers. Broad UCMs spanning the retention time of compound elution contain nearly the same compounds observed in the early-, mid-, and late-retention time UCMs. Although the origin of the polycyclic compounds is unclear, the variations in the UCM topology appear to depend on the concentration of initial compound classes that have the potential to become isomerized. Isomerization of these constituents may have resulted from hydrothermal alteration of organic matter.  相似文献   
84.
Computational Movement Analysis focuses on the characterization of the trajectory of individuals across space and time. Various analytic techniques, including but not limited to random walks, Brownian motion models, and step selection functions have been used for modeling movement. These fall under the rubric of signal models which are divided into deterministic and stochastic models. The difficulty of applying these models to the movement of dynamic objects (e.g. animals, humans, vehicles) is that the spatiotemporal signal produced by their trajectories a complex composite that is influenced by the Geography through which they move (i.e. the network or the physiography of the terrain), their behavioral state (i.e. hungry, going to work, shopping, tourism, etc.), and their interactions with other individuals. This signal reflects multiple scales of behavior from the local choices to the global objectives that drive movement. In this research, we propose a stochastic simulation model that incorporates contextual factors (i.e. environmental conditions) that affect local choices along its movement trajectory. We show how actual global positioning systems observations can be used to parameterize movement and validate movement models and argue that incorporating context is essential in modeling movement.  相似文献   
85.
Salt marsh elevation and geomorphic stability depends on mineral sedimentation. Many Mediterranean-climate salt marshes along southern California, USA coast import sediment during El Niño storm events, but sediment fluxes and mechanisms during dry weather are potentially important for marsh stability. We calculated tidal creek sediment fluxes within a highly modified, sediment-starved, 1.5-km2 salt marsh (Seal Beach) and a less modified 1-km2 marsh (Mugu) with fluvial sediment supply. We measured salt marsh plain suspended sediment concentration and vertical accretion using single stage samplers and marker horizons. At Seal Beach, a 2014 storm yielded 39 and 28 g/s mean sediment fluxes and imported 12,000 and 8800 kg in a western and eastern channel. Western channel storm imports offset 8700 kg exported during 2 months of dry weather, while eastern channel storm imports augmented 9200 kg imported during dry weather. During the storm at Mugu, suspended sediment concentrations on the marsh plain increased by a factor of four; accretion was 1–2 mm near creek levees. An exceptionally high tide sequence yielded 4.4 g/s mean sediment flux, importing 1700 kg: 20 % of Mugu’s dry weather fluxes. Overall, low sediment fluxes were observed, suggesting that these salt marshes are geomorphically stable during dry weather conditions. Results suggest storms and high lunar tides may play large roles, importing sediment and maintaining dry weather sediment flux balances for southern California salt marshes. However, under future climate change and sea level rise scenarios, results suggest that balanced sediment fluxes lead to marsh elevational instability based on estimated mineral sediment deficits.  相似文献   
86.
Glenn S. Orton 《Icarus》1975,26(2):142-158
Observations of Jovian limb structure at 8.11 and 8.45 microns are reported. These are used along with other limb structure and spectral data in the 8–14 micron region to derive a model of the thermal and cloud structure within the 1.0-0.01 bar pressure regime. The model is generally consistent with models derived from Pioneer 10 infrared radiometer data reported by Orton (1975b). The temperature is about 165K at 1.00 bar, 108K at 0.01 bar, and 143K at 0.03 bar. In zones, an optically opaque cloud of NH3 exists near the 143K (0.60 bar) level. A partly transparent haze of solid NH3 particles overlies the cloud. Belts are free of the cloud and have a much lower abundance of NH3 haze than the zones. The data are consistent with an NH3 gas abundance defined by saturation equilibrium, with a mixing ratio of 1.5 × 10?4 deep in the atmosphere, and with a CH4 mixing ratio of 2 × 10?3, about three times the currently accepted value.  相似文献   
87.
Glenn S. Orton 《Icarus》1975,26(2):159-174
Observational determinations of the absolute spectral reflectivities of visually distinct regions of Jupiter are presented. The observations cover the 3390–8400 Å region at 10 Å resolution, and they are compared with observations using 150–200 Å filters in the 3400–6400 Å range. The effective reflectivities for several regions (on the meridian) in the 3400–8400 Å range are: South Tropical Zone, 0.76±0.05; North Tropical Zone, 0.68±0.08; South Equatorial Belt, 0.63±0.08; North Equatorial Belt, 0.62±0.04; and the Great Red Spot, 0.64±0.09. Reflectivities near the limb are also observed. The appropriate blue and red reflectivities are tabulated in support of the Pioneer 10 and 11 imaging photopolarimeter experiments. For the regions listed above, equivalent widths of molecular bands vary as: CH4 (6190 Å), 14–16 Å; CH4 (7250 Å), 77–86 Å; and NH3 (7900 Å), 87–95 Å. Significant differences from the results of C. B. Pilcher, R. G. Prinn, and T. B. McCord (“Spectroscopy of Jupiter: 3200 to 11200 Å,” J. Atmos. Sci.30, 302–307.)  相似文献   
88.
Wind effects on sub-tidal currents are studied using current meter records obtained at six moorings across the main basin of Puget Sound. High correlations between wind speeds and currents are found near the surface and at mid-depths of about 100 m. Empirical Orthogonal Function analysis applied to the axial currents in 1984 and 1985 shows that mode 1, containing over 60% of the variance, is highly correlated with wind speed even without any near surface current records. When near surface stratification is strong, direct wind effects are limited to the upper 30 m with counter currents in the lower layer indicating a baroclinic response. The transport in the lower layer almost balances the transport in the upper layer. When near surface stratification is weak, direct wind effects on currents can be detected to about 100 m. In this case, there is no clear and consistent depth at which one can separate the upper from the lower layer. Time series show that the acceleration in the surface layer initially increases in the same direction as the wind when the wind starts blowing, but it reaches a maximum, starts decreasing, and eventually changes to the opposite direction (decelerates) while the wind continues to blow in one direction. Results of a continuously stratified normal mode model and estimations from the observations suggest that friction at solid boundaries is a major cause of these phenomena. The model shows that modal currents of normal modes 2 and 3 are as important as mode 1, although the resultant vertical structure of total current shows a two-layer type pattern with only one zero crossing. The effect of the baroclinic pressure gradient is only apparent at low frequencies and among lower modes.  相似文献   
89.
90.
Ecosystem services provided by depressional wetlands on the coastal plain of the Chesapeake Bay watershed (CBW) have been widely recognized and studied. However, wetland–groundwater interactions remain largely unknown in the CBW. The objective of this study was to examine the vertical interactions of depressional wetlands and groundwater with respect to different subsurface soil characteristics. This study examined two depressional wetlands with a low‐permeability and high‐permeability soil layer on the coastal plain of the CBW. The surface water level (SWL) and groundwater level (GWL) were monitored over 1 year from a well and piezometer at each site, respectively, and those data were used to examine the impacts of subsurface soil characteristics on wetland–groundwater interactions. A large difference between the SWL and GWL was observed at the wetland with a low‐permeability soil layer, although there was strong similarity between the SWL and GWL at the wetland with a high‐permeability soil layer. Our observations also identified a strong vertical hydraulic gradient between the SWL and GWL at the wetland with a high‐permeability soil layer relative to one with a low‐permeability soil layer. The hydroperiod (i.e., the total time of surface water inundation or saturation) of the wetland with a low‐permeability soil layer appeared to rely on groundwater less than the wetland with a high‐permeability soil layer. The findings showed that vertical wetland–groundwater interactions varied with subsurface soil characteristics on the coastal plain of the CBW. Therefore, subsurface soil characteristics should be carefully considered to anticipate the hydrologic behavior of wetlands in this region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号