首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   445篇
  免费   14篇
  国内免费   2篇
测绘学   89篇
大气科学   10篇
地球物理   93篇
地质学   127篇
海洋学   47篇
天文学   69篇
自然地理   26篇
  2021年   3篇
  2020年   2篇
  2019年   7篇
  2018年   7篇
  2017年   9篇
  2016年   14篇
  2015年   11篇
  2014年   11篇
  2013年   16篇
  2012年   14篇
  2011年   17篇
  2010年   21篇
  2009年   23篇
  2008年   14篇
  2007年   12篇
  2006年   17篇
  2005年   9篇
  2004年   26篇
  2003年   13篇
  2002年   23篇
  2001年   17篇
  2000年   14篇
  1999年   23篇
  1998年   19篇
  1997年   22篇
  1996年   14篇
  1995年   9篇
  1994年   7篇
  1993年   2篇
  1992年   4篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   4篇
  1986年   3篇
  1985年   5篇
  1984年   3篇
  1983年   2篇
  1981年   6篇
  1980年   2篇
  1979年   5篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1970年   2篇
  1963年   1篇
  1962年   1篇
  1959年   1篇
  1950年   1篇
排序方式: 共有461条查询结果,搜索用时 15 毫秒
101.
102.
103.
Fluid and solid inclusions have been studied in selected samples from a series of spinel-bearing Crdiopside-and Al-augite-series ultramafic (harzburgites, lherzolites, and olivine-clinopyroxene-rich rocks), and gabbroic xenoliths from Hierro, Canary Islands. In these samples several generations of fluid inclusions and ultramafic-and mafic-glass inclusions may be texturally related to different stages of crystal growth. The fluid inclusions consist of pure, or almost pure, CO2. The solid inclusions in the ultramafic xenoliths comprise early inclusions of devitrified ultramafic glass, sulphide inclusions, as well as polyphase inclusions (spinel+clinopyroxene±glass±other silicates) believed to have formed from trapped basaltic melts. Vitreous basaltic glass±CO2±sulphide±silicates are common as secondary inclusions in the ultramafic xenoliths, and as primary inclusions in the gabbroic xenoliths. Microthermometry gives minimum trapping temperatures of 1110° C for the early ultramafic-and mafic-glass inclusions, and a maximum of 1260–1280° C for late inclusions of host basaltic glass. In most samples the CO2 inclusions show a wide range in homogenization temperatures (-40 to +31° C) as a result of decrepitation during ascent. The lowest homogenization temperatures of about-40° C, recorded in some of the smallest CO2 inclusions, indicate a minimum depth of origin of 35 km (12 kbar) for both the Cr-diopside-and Al-augite-series xenoliths. The gabbroic xenoliths originate from a former magma chamber at a depth of 6–12 km.Contribution no. 100 of the Norwegian programme of the International Lithosphere Project  相似文献   
104.
A pre-historic collapse of the northeastern flank of Jocotitlán Volcano (3950 m), located in the central part of the Trans Mexican Volcanic Belt, produced a debris-avalanche deposit characterized by surficial hummocks of exceptional size and conical shape. The avalanche covered an area of 80 km2, had an apparent coefficient of friction (H/L)_of 0.11, a maximum runout distance of 12 km, and an estimated volume of 2.8 km3. The most remarkable features of the Jocotitlán debris avalanche deposit are: the several steep (29–32°) conical proximal hummocks (up to 165 m high), large tansverse ridges (up to 205 m high and 2.7 km long) situated at the base of the volcano, and the steep 15–50 m thick terminal scarp. Proximal conical hummocks and parallel ridges that can be visually fitted back to their pre-collapse position on the mountain resulted from a sliding mode of emplacement. Steep primary slopes developed as a result of the accumulation of coarse angular clasts at the angle of repose around core clasts that are decameters in size. Distal hummocks are commonly smaller, less conical, and clustered with more diffuse outlines. Field evidence indicates that the leading distal edge of the avalanche spilled around certain topographic barriers and that the distal moving mass had a yield strength prior to stopping. In the NE sector, the avalanche was suddenly confined by topographically higher lacustrine and volcaniclastic deposits which as a result were intensely thrust-faulted, folded, and impacted by large clasts that separated from the avalanche front. Post-emplacement loading also induced normal faulting of these soft, locally water-rich sediments. The regional tectonic pattern, N-NE direction of flank failure, and the presence of a major normal fault which intersects the volcano and is parallel to the orientation of the Acambay graben located 10 km to the N suggest a genetic relationship between the extensional tectonic stress regime and triggering of catastrophic slope failure. The presence of a 3-m-thick sequence of pumice and obsidian-rich pyroclastic surge and fall tephra directly overlying the debris-avalanche deposit indicates that magma must have been present within the edifice just prior to the catastrophic flank failure. The breached crater left by the avalanche has mostly been filled by dacitic domes and lava flows. The youngest pryroclastic surge deposits on the upper flanks of the volcano have an historical C14 age of 680±80 yearsBp (Ad 1270±80). Thus Jocotitlán volcano, formerly believed to be extinct, should be considered potentially active. Because of its close proximity to Mexico-City (60 km), the most populous city in the world, reactivation could engender severe hazards.  相似文献   
105.
106.
107.
Geological carbon storage represents a new and substantial challenge for the subsurface geosciences. To increase understanding and make good engineering decisions, containment processes and large-scale storage operations must be simulated in a thousand year perspective. A hierarchy of models of increasing computational complexity for analysis and simulation of large-scale CO2 storage has been implemented as a separate module of the open-source Matlab Reservoir Simulation Toolbox (MRST). This paper describes a general family of two-scale models available in this module. The models consist of two-dimensional flow equations formulated in terms of effective quantities obtained from hydrostatic reconstructions of vertical pressure and saturation distributions. The corresponding formulation is fully implicit and is the first to give a mass-conservative treatment and include general (non-linearized) CO2 properties. In particular, the models account for compressibility, dissolution, and hysteresis effects in the fine-scale capillary and relative permeability functions and can be used to accurately and efficiently study the combined large-scale and long-term effects of structural, residual, and solubility trapping.  相似文献   
108.
Radiative lifetimes for excited states in La ii, Ce ii, Pr ii, Nd ii, Sm ii, Yb i, Yb ii, and Lu ii have been determined by means of the beam-foil technique or the zero-field level-crossing method. The lifetimes for La, Ce, Pr, Nd, Sm, and Yb are shorter than those computed by summing the transition probabilities of Corliss and Bozman by a factor of up to ~5. The large discrepancies between the abundance of La, Ce, Pr, Nd, and Sm in the solar photosphere and in meteorites are eliminated or greatly reduced if the abundance determinations of the solar photosphere are based upon the gf values of Corliss and Bozman, corrected for by the present lifetimes.  相似文献   
109.
Rivers and aquifers are, in many cases, a connected resource and as such the interactions between them need to be understood and quantified for the resource to be managed appropriately. The objective of this paper is to advance the understanding of river–aquifer interactions processes in semi‐arid environments stressed by groundwater abstraction. This is performed using data from a specific catchment where records of precipitation, evapotranspiration, river flow, groundwater levels and groundwater abstraction are analysed using basic statistics, hydrograph analysis and a simple mathematical model to determine the processes causing the spatial and temporal changes in river–aquifer interactions. This combined approach provides a novel but simple methodology to analyse river–aquifer interactions, which can be applied to catchments worldwide. The analysis revealed that the groundwater levels have declined (~ 3 m) since the onset of groundwater abstraction. The decline is predominantly due to the abstraction rather than climatic changes (r = 0.84 for the relationship between groundwater abstraction and groundwater levels; r = 0.92 for the relationship between decline in groundwater levels and magnitude of seasonal drawdown). It is then demonstrated that, since the onset of abstraction, the river has changed from being gaining to losing during low‐flow periods, defined as periods with flow less than 0.5, 1.0 or 1.5 GL/day (1 GL/day = 1 × 106 m3/day). If defined as < 1.0 GL/day, low‐flow periods constitute approximately 65% of the river flows; the periods where the river is losing at low‐flow conditions are thus significant. Importantly, there was a significant delay (> 10 years) between the onset of groundwater abstraction and the changeover from gaining to losing conditions. Finally, a relationship between the groundwater gradient towards the river and the river flow at low‐flow is demonstrated. The results have important implications for water management as well as water ecology and quality. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号