首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48105篇
  免费   5186篇
  国内免费   7320篇
测绘学   3053篇
大气科学   6838篇
地球物理   10380篇
地质学   24687篇
海洋学   4298篇
天文学   2574篇
综合类   4640篇
自然地理   4141篇
  2024年   88篇
  2023年   416篇
  2022年   1148篇
  2021年   1338篇
  2020年   1150篇
  2019年   1303篇
  2018年   5831篇
  2017年   5053篇
  2016年   3825篇
  2015年   1534篇
  2014年   1690篇
  2013年   1656篇
  2012年   2544篇
  2011年   4254篇
  2010年   3451篇
  2009年   3738篇
  2008年   3175篇
  2007年   3546篇
  2006年   1169篇
  2005年   1281篇
  2004年   1156篇
  2003年   1146篇
  2002年   944篇
  2001年   736篇
  2000年   827篇
  1999年   1112篇
  1998年   882篇
  1997年   940篇
  1996年   861篇
  1995年   723篇
  1994年   582篇
  1993年   527篇
  1992年   409篇
  1991年   299篇
  1990年   237篇
  1989年   183篇
  1988年   180篇
  1987年   133篇
  1986年   106篇
  1985年   73篇
  1984年   53篇
  1983年   46篇
  1982年   36篇
  1981年   48篇
  1980年   54篇
  1979年   29篇
  1978年   15篇
  1976年   17篇
  1975年   14篇
  1958年   18篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Sediment samples collected in the Moradabad area, lying in the interfluve of the Ganga and Ramganga Rivers, were analysed for heavy metals, after studying the geomorphology of the area. Geomorphologically, the area can be divided into three terraces - the T0, T1 and T2 surfaces. The rivers on these three surfaces show varying amounts of pollution depending upon the input from industries and urban settlements. The Ramganga River on the T0 surface shows the highest amount of pollution. However, the pollution levels in all these rivers show a downstream dilution effect. The characteristic feature of the vast interfluve area (T2 surface) is the presence of several, independent basins which are closed and rarely interact with each other or with any river. The sediments are redistributed and redeposited within the basin itself, and thus these basins serve as sinks. The sediments of one such basin in the study area show significant concentrations of arsenic, chromium, copper, nickel, lead, zinc and organic carbon. The concentrations of heavy metals in such a basin will show exponential increases with time, because there is no activity to funnel out the sediments and dilute the effect of pollution. This increase will pose more threats, as ultimately it will make its way laterally and vertically through the sediments, thereby polluting groundwater.  相似文献   
992.
The skill and efficiency of a numerical model mostly varies with the quality of initial values, accuracy on parameterization of physical processes and horizontal and vertical resolution of the model. Commonly used low-resolution reanalyses are hardly able to capture the prominent features associated with organized convective processes in a monsoon depression. The objective is to prepare improved high-resolution analysis by the use of MM5 modelling system developed by the Pennsylvania State University/National Center for Atmospheric Research (PSU/NCAR). It requires the objective comparison of high and low-resolution analysis datasets in assessing the specific convective features of a monsoon depression. For this purpose, reanalysis datasets of NCAR/NCEP (National Center for Atmospheric Research/National Centers for Environmental Prediction) at a horizontal resolution of 2.5‡ (latitude/longitude) have been used as first guess in the objective analysis scheme. The additional asynoptic datasets obtained during BOBMEX-99 are utilized within the assimilation process. Cloud Motion Wind (CMW) data of METEOSAT satellite and SSM/I surface wind data are included for the improvement of derived analysis. The multiquadric (MQD) interpolation technique is selected and applied for meteorological objective analysis at a horizontal resolution of 30 km. After a successful inclusion of additional data, the resulting reanalysis is able to produce the structure of convective organization as well as prominent synoptic features associated with monsoon depression. Comparison and error verifications have been done with the help of available upper-air station data. The objective verification reveals the efficiency of the analysis scheme.  相似文献   
993.
Glasses from Mauna Loa pillow basalts, recent subaerial vents, and inclusions in olivine were analyzed for S, Cl, F, and major elements by electron microprobe. Select submarine glasses were also analyzed for H2O and CO2 by infrared spectroscopy. The compositional variation of these tholeiitic glasses is dominantly controlled by crystal fractionation and they indicate quenching temperatures of 1,115-1,196 °C. Submarine rift zone glasses have higher volatile abundances (except F) than nearly all other submarine and subaerial glasses with the maximum concentrations increasing with water depth. The overwhelming dominance of degassed glasses on the submarine flanks of Mauna Loa implies that much of volcano's recent submarine growth involved subaerially erupted lava that reached great water depths (up to 3.1 km) via lava tubes. Anomalously high F and Cl in some submarine glasses and glass inclusions indicate contamination possibly by fumarolic deposits in ephemeral rift zone magma chambers. The relatively high CO2 but variable H2O/K2O and S/K2O in some submarine rift zone glasses indicates pre-eruptive mixing between degassed and undegassed magma within Mauna Loa's rift system. Volatile compositions for Mauna Loa magmas are similar to other active Hawaiian volcanoes in S and F, but are less Cl-rich than Ll'ihi glasses. However, Cl/K2O ratios are similar. Mauna Loa and Ll'ihi magmas have comparable, but lower H2O than those from Kilauea. Thus, Kilauea's source may be more H2O-rich. The dissimilar volatile distribution in glasses from active Hawaiian volcanoes is inconsistent with predictions for a simple, concentrically zoned plume model.  相似文献   
994.
We consider radiative transfer in C18O, HCO+, and CS molecular lines in a spherically symmetrical, coupled, dynamical and chemical model of a prestellar core whose evolution is determined by ambipolar diffusion. Theoretical and observed line profiles are compared for the well-studied core L1544, which may be a collapsing protostellar cloud. We study the relationship between the line shapes and model parameters. The structure of the envelope and kinematic parameters of the cloud are the most important factors determining the shape of the lines. Varying the input model parameters for the radiative transfer—the kinetic temperature and microturbulent velocity—within the limits imposed by observations does not result in any substantial variations of the line profiles. The comparison between the model and observed spectra indicates that L1544 displays a flattened structure, and is viewed at an oblique angle. A two-dimensional model is needed to reproduce this structure.  相似文献   
995.
996.
997.
Using analytic signal method, interpretation of pole-pole secondary electric potentials due to 2D conductive/resistive prisms is presented. The estimated parameters are the location, lateral extent or width and depth to top surface of the prism. Forward modelling is attempted by 2D-Finite Difference method. The proposed stabilised analytic signal algorithm (RES2AS) uses Tikhonov’s regularization scheme and FFT routines. The algorithm is tested on three theoretical examples and field data from the campus of Roorkee University. The stability of RES2AS is also tested on synthetic error prone secondary pole-pole potential data.  相似文献   
998.
Closed form analytical expressions of stresses and displacements at any field point due to a very long dip-slip fault of finite width buried in a homogeneous, isotropic elastic half-space, are presented. Airy stress function is used to derive the expressions of stresses and displacements which depend on the dip angle and depth of the upper edge of the fault. The effect of dip angle and depth of the upper edge of the fault on stresses and displacements is studied numerically and the results obtained are presented graphically. Contour maps for stresses and displacements are also presented. The results of Rani and Singh (1992b) and Freund and Barnett (1976) have been reproduced.  相似文献   
999.
The West Kunlun orogenic belt is located at the conjunction of the paleo-Asian tectonic system and the Tethys tectonic system. Petrological and mineralogical studies of the Early Cambrian metamorphic surface crust in this region have shown that in case the metamorphism reached low-temperature granulate facies, the typical mineral assemblage is biotite-garnet-silimanite-K feldspar-plagioclase-quartz. The peak metamorphic temperatures are within the range of 720–740°C and the pressure is 0.6 GPa ±. Three types of metamorphic zircon have been detected in the metamorphic rocks: the complex inclusion-bearing type ; the early relic zircon inclusion-bearing type; and the inclusion-free type. SHRIMP age determination of these three types of metamorphic zircon have revealed that these zircons were formed principally during 400–460 Ma, indicating that pre-Cambrian metamorphic surface crust rocks underwent low-temperature granulite facies metamorphism during the Caledonian. In combination with the geological characteristics of this region, it is considered that when the oceanic basin was closed, there occurred intense intracontinental subduction (type A), bringing part of the Early Cambrian metamorphic basement in this region downwards to the lower crust. Meanwhile, there were accompanied with tectonic deformation at deep levels and medium- to high-grade metamorphism. This study provided important chronological and mineralogical evidence for the exploration of the evolutionary mechanism and process of the West Kunlun Early Paleozoic. Part of the results from the research project “ Research on the West Kunlun pre-Cambrian tectonic events” under the program “ Research on the important geological problems of China’ s pre-Cambrian” (No. 200113900070) sponsored by the China National Geological Surveying Bureau.  相似文献   
1000.
Land subsidence caused by groundwater exploitation in Suzhou City,China   总被引:10,自引:2,他引:10  
Suzhou City, located at the lower reaches of the Yangtze River in southeastern Jiangsu Province, is one of the few cities in China which suffer from severe ground settlement. A research project was carried out to investigate this problem. Geological and hydrogeological studies show that there is a multi-layered aquifer system with three distinct, soft mud layers of marine and lagoonal origins. An examination of historical records of groundwater extraction, water levels, and ground settlement shows that the ground subsidence is associated with the continuously increasing groundwater extraction in the deep, confined aquifer. It is believed that the consolidation of the soft mud layers, especially the third layer which is thick and close to the main pumped aquifer, contributes to the ground settlement. A three-dimensional finite difference numerical model representing the multi-layered aquifer system was developed to study the ground settlement in response to groundwater extraction. By calibrating the model with both the measured groundwater level and ground settlement, the aquifer parameters were estimated. The model outputs fit reasonably well with the observed results, which indicates that the numerical model can reproduce the dynamic processes of both groundwater flow and soil consolidation. The hydraulic conductivity of the third mud layer near the center of the ground settlement has been reduced by over 30% in the last 14 years. The gradual deterioration in the hydraulic conductivity of the mud may have significant adverse effect on the sustainable groundwater resource of the deep confined aquifer, since the recharge from the shallow aquifers through the mud layer is the only source of water to the deep aquifer. An analysis of the spatial distributions of groundwater drawdown and ground settlement shows that the area with maximum drawdown is not necessarily the area with maximum ground settlement due to the occurrence of the soft mud layer. A simple reallocation in pumping rates on the basis of the spatial distribution of the thick mud layer could significantly reduce the ground settlement. Electronic Publication  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号