首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   348篇
  免费   9篇
  国内免费   12篇
测绘学   6篇
大气科学   65篇
地球物理   64篇
地质学   129篇
海洋学   24篇
天文学   59篇
综合类   5篇
自然地理   17篇
  2024年   1篇
  2023年   2篇
  2022年   4篇
  2021年   16篇
  2020年   11篇
  2019年   19篇
  2018年   18篇
  2017年   8篇
  2016年   20篇
  2015年   16篇
  2014年   25篇
  2013年   31篇
  2012年   23篇
  2011年   21篇
  2010年   21篇
  2009年   23篇
  2008年   18篇
  2007年   15篇
  2006年   17篇
  2005年   10篇
  2004年   7篇
  2003年   7篇
  2002年   5篇
  2001年   3篇
  2000年   6篇
  1999年   5篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1981年   2篇
  1973年   1篇
排序方式: 共有369条查询结果,搜索用时 31 毫秒
101.
The species composition and trophic structure of the Barents Sea fish assemblage is analysed based on data from research survey trawls and diet analyses of various species. Atlantic cod was the dominant fish species encountered, accounting for more than 55% by abundance or biomass. Only five fish species (long rough dab, thorny skate, Greenland halibut, deepwater redfish and saithe) were sufficiently abundant to be considered as possible food competitors with cod in the Barents Sea. However, possible trophic competition is not high, due to low spatial and temporal overlap between cod and these other species. Analyses of fish assemblages and trophic structures of the Barents Sea and other areas (North Sea, Western Greenland, Newfoundland-Labrador shelf) suggest that Barents Sea cod is the only cod stock for which the ability to recover may not be restricted by trophic relations among fishes, due to a lack of other abundant predatory species and low potential for competition caused by spatial-temporal changes.  相似文献   
102.
The changes with timet of a temperature deviation δT(t,α) and of a vertical velocityW i(t,α) of an isolated dry thermal have been investigated theoretically. Solutions for the functionW i(t, α) have been derived for stable and unstable environmental stratifications. Comparing these solutions with the corresponding ones for the rise of an adiabatic thermal yield some interesting conclusions. Firstly, there is the evident relation between the rate of entrainment of environmental air (expressed by the parameter α=(1/M i) dM i/dz whereM i is the mass of the thermal) and the vertical velocity of the thermal: an increase in α decreases the velocity. Two similar thermals in stably stratified surroundings, one of them moving adiabatically (α=0) the other nonadiabatically (α>0), would rise for the same length of timet 2=π/N, whereN is a typical Brunt-Väisälä frequency, but with different velocities and to different heights: the ascent timet 2 depends only on environmental parameters. In an unstable stratification, the vertical non-adiabatic velocity of the thermal, instead of increasing without limit, tends towards a finite asymptotic velocity $$W_t (\infty ) = (\sqrt { - \mathcal{N}^2 } )/\alpha $$ the value of which depends upon both the stratification of the surroundings and upon the entrainment rate α. In a real atmosphere, where additional retarding forces exist, the motion will certainly be damped.  相似文献   
103.
104.
The stability of the climate-vegetation system in the northern high latitudesis analysed with three climate system models of different complexity: A comprehensive 3-dimensional model of the climate system, GENESIS-IBIS, and two Earth system models of intermediate complexity (EMICs), CLIMBER-2 andMoBidiC. The biogeophysical feedback in the latitudinal belt 60–70° N, although positive, is not strong enough to support multiple steady states: A unique equilibriumin the climate-vegetation system is simulated by all the models on a zonal scale for present-day climate and doubled CO2 climate.EMIC simulations with decreased insolation also reveal a unique steady state. However, the climate sensitivity to tree cover, TF, exhibits non-linear behaviour within the models. For GENESIS-IBIS and CLIMBER-2, TF islower for doubled CO2 climate than for present-day climate due to a shorter snow season and increased relative significance ofthe hydrological effect of forest cover. For the EMICs, TF is higher for low tree fraction than for high treefraction, mainly due to a time shift in spring snow melt in response to changes in tree cover. The climate sensitivity to tree coveris reduced when thermohaline circulation feedbacks are accounted for in the EMIC simulations. Simpler parameterizations of oceanic processes have opposite effects on TF: TF is lower in simulations with fixed SSTs and higher in simulations with mixed layer oceans. Experiments with transient CO2 forcing show climate and vegetation not in equilibrium in the northern high latitudes at the end of the 20thcentury. The delayed response of vegetation and accelerated global warming lead to rather abrupt changes in northern vegetation cover in the first halfof the 21st century, when vegetation cover changes at double the present day rate.  相似文献   
105.
106.
The article considers the long-term(1941–2018) transformation of the Krasnodar valley reservoir, the largest in the North Caucasus. The main functions of the Krasnodar reservoir are irrigation of rice systems and flood protection of land in the Krasnodar reservoir region and the Republic of Adygea. According to topographic maps, Landsat satellite images(1974–2018) and field observations(2016–2018), four stages of transformation of the floodplain reservoir are identified. The selected stages are characterized by both natural causes(the transformation of the filling deltas into the extended deltas, etc.) and man-made causes(runoff diversions in the delta areas, etc.). The key factor of transformation is the formation of deltas of rivers flowing into the reservoir. Each of the selected stages, against the background of a gradual reduction in the area and volume of the reservoir, is characterized by the peculiarities of the formation of river deltas with the formation of genetically homogeneous sections of delta regions. During the period of operation of the reservoir, the delta of the main Kuban River moved up to 32.4 km and took away an area of 35.4 km~2 of the reservoir. During the formation of the deltas of the Kuban and Belaya rivers, a bridge was formed on the Krasnodar reservoir. The evolution of the delta regions led to the division of the reservoir into two autonomous reservoirs. The total area of the delta regions was 85.9 km~2 by 2018, i.e., 21% of the initial area of the reservoir. The transformation of the Krasnodar reservoir leads to a decrease in its regulated volume and gradual degradation.  相似文献   
107.
We propose an algorithm for inverting time domain induced polarization data to a relaxation time distribution. The algorithm is based on the (Tikhonov) regularized solution of the 1st kind Fredholm integral equation. We test the algorithm on synthetic data, and show its robustness for a noise level, typical of laboratory time domain measurements. We also show that, for the inversion purpose, the time domain data must be obtained with the different current wavelengths. We then test the algorithm on the experimental data recently obtained on brine-saturated medium-grained quartz sand (average grain diameter of 4 × 10−4 m), and on sand mixtures. For the medium-grained sand, relaxation time distribution contains a main peak at 25 s. Different amounts (3%, 8% and 12%) of fine-grained quartz sand (average grain diameter of 1.12 × 10−4 m) were added to the medium-grained quartz sand. For the sand mixture, an additional peak is observed in the relaxation time distributions, in the time range from 1.0 to 2.5 s. The magnitude of the second peak increases with the increase of the fine-grained sand content. Therefore, the experimental data show that peaks in the relaxation time distributions are related to the grain size. On the basis of the known peak location, and of the known grain size value, we obtained the values of the diffusion coefficient, which were found to be of the same order of magnitude as those in the bulk solution.  相似文献   
108.
A high-resolution pollen record from Lake Teletskoye documents the climate-related vegetation history of the northern Altai Mountain region during the last millennium. Siberian pine taiga with Scots pine, fir, spruce, and birch dominated the vegetation between ca. AD 1050 and 1100. The climate was similar to modern. In the beginning of the 12th century, birch and shrub alder increased. Lowered pollen concentrations and simultaneous peaks in herbs (especially Artemisia and Poaceae), ferns, and charcoal fragments point to colder and more arid climate conditions than before, with frequent fire events. Around AD 1200, regional climate became warmer and more humid than present, as revealed by an increase of Siberian pine and decreases of dry herb taxa and charcoal contents. Climatic conditions were rather stable until ca. AD 1410. An increase of Artemisia pollen may reflect slightly drier climate conditions between AD 1410 and 1560. Increases in Alnus, Betula, Artemisia, and Chenopodiaceae pollen and in charcoal particle contents may reflect further deterioration of climate conditions between AD 1560 and 1810, consistent with the Little Ice Age. After AD 1850 the vegetation gradually approached the modern one, in conjunction with ongoing climate warming.  相似文献   
109.
Measurements of atmospheric turbulence made during the Surface Heat Budget of the Arctic Ocean Experiment (SHEBA) are used to examine the profile stability functions of momentum, φ m , and sensible heat, φ h , in the stably stratified boundary layer over the Arctic pack ice. Turbulent fluxes and mean meteorological data that cover different surface conditions and a wide range of stability conditions were continuously measured and reported hourly at five levels on a 20-m main tower for 11 months. The comprehensive dataset collected during SHEBA allows studying φ m and φ h in detail and includes ample data for the very stable case. New parameterizations for φ m (ζ) and φ h (ζ) in stable conditions are proposed to describe the SHEBA data; these cover the entire range of the stability parameter ζ = z/L from neutral to very stable conditions, where L is the Obukhov length and z is the measurement height. In the limit of very strong stability, φ m follows a ζ 1/3 dependence, whereas φ h initially increases with increasing ζ, reaches a maximum at ζ ≈ 10, and then tends to level off with increasing ζ. The effects of self-correlation, which occur in plots of φ m and φ h versus ζ, are reduced by using an independent bin-averaging method instead of conventional averaging.  相似文献   
110.
A previously developed model of the high-latitude ionosphere is used to calculate the distribution of the ionospheric parameters in the polar region. A specific method for specifying input parameters of the mathematical model, using the experimental data obtained by the method of satellite radio tomography, is used in this case. The spatial distributions of the ionospheric parameters characterized by a complex inhomogeneous structure in the high-latitude region, calculated with the help of the mathematical model, are used to simulate the HF propagation along the meridionally oriented radio paths extending from middle to high latitudes. The method for improving the HF communication between a midlatitude transmitter and a polar-cap receiver is proposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号