首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   5篇
  国内免费   48篇
海洋学   74篇
综合类   12篇
  2023年   2篇
  2022年   5篇
  2021年   5篇
  2020年   1篇
  2019年   5篇
  2018年   3篇
  2017年   6篇
  2016年   3篇
  2015年   6篇
  2014年   9篇
  2013年   9篇
  2012年   4篇
  2011年   2篇
  2010年   4篇
  2009年   1篇
  2007年   7篇
  2006年   1篇
  2005年   4篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
排序方式: 共有86条查询结果,搜索用时 31 毫秒
31.
有害赤潮对海洋生态环境和沿海经济危害巨大,如何安全、有效地治理有害赤潮非常重要。文章考察了几种常见芽孢杆菌对近海典型赤潮生物——东海原甲藻(Prorocentrum donghaiense)的去除作用,发现解淀粉芽孢杆菌(Bacillus amyloliquefaciens)对其去除作用最强。进一步考察解淀粉芽孢杆菌对不同赤潮生物的去除作用,发现该芽孢杆菌对米氏凯伦藻(Karenia mikimotoi)和赤潮异弯藻(Heterosigma akashiwo)的去除作用高于东海原甲藻。在此基础上,将解淀粉芽孢杆菌与高岭土复合,研究了微生物复合粘土对典型赤潮生物的去除效果。结果表明,解淀粉芽孢杆菌与高岭土复合后,能够有效促进该菌的生长,进而提升了其对赤潮生物的去除能力。文章对芽孢杆菌及其复合粘土去除赤潮生物的机制进行了分析和探讨,为进一步发展和优化改性粘土治理赤潮技术体系提供了重要参考。  相似文献   
32.
麻痹性贝类毒素(paralytic shellfish toxins,PSTs)是由某些甲藻产生的一种高毒性神经毒素,在海洋环境中分布广、危害大,可对水产养殖和人类健康造成重大危害;PSTs毒素的毒性大小随种类和结构的不同有较大差异。迄今,国内外学者针对PSTs的来源分布、迁移转化、生物合成及其影响因素等开展了大量的调查研究,但目前对于藻细胞产毒的生物合成途径、遗传学特征及其环境调控机理等研究仍处于起步阶段。PSTs的生物合成过程不仅与藻细胞自身生长阶段有关,还会受到光照、温度、营养盐等多种环境因素的影响,环境条件的改变会引起藻细胞毒素组成和含量发生不同程度的变化。近年来,研究人员应用基因组学和蛋白质组学技术,发现了产生PSTs的典型甲藻——亚历山大藻(Alexandrium)细胞内与PSTs毒素生物合成相关的某些基因或蛋白质,对我们更清晰地了解亚历山大藻产生PSTs毒素的机制具有重要意义。本文综合以往的研究报道,对亚历山大藻中PSTs的生物合成与转化及其主要影响因素进行了总结,以期为产毒有害藻华的防治提供科学依据。  相似文献   
33.
北部湾典型海域关键环境因子的时空分布与影响因素   总被引:4,自引:0,他引:4  
为研究北部湾典型海域关键环境因子的时空分布及其影响因素, 2016年9月至2017年8月对该海域29个站位进行了多学科月度综合调查,分析了该海域主要理化因子的时空分布特征,探讨了水文及生物因素对关键环境因子分布的影响。结果表明:硝氮(NO_3~--N)、活性磷酸盐(SRP)的时空分布具有一致性,高值区主要出现在近岸钦州湾海域,海峡口临近海域及30m等深线以深海域,各月份总有机碳(TOC)、溶解有机碳(DOC)的表底浓度无明显差异(P0.05),高温季节溶解氧(DO)、pH的低值区主要位于30m等深线以深的底层海域。DO、pH、NO_3~--N、SRP、溶解硅酸盐(DSi)为影响该海域浮游植物生长的关键理化因子。近岸10m等深线以浅的区域I中, NO_3~--N浓度主要受地表径流带来的陆源污染影响,区域II中NO_3~--N、SRP在秋季受到南海水向北入侵影响,春、冬季受来自琼州海峡的混合水影响, 30m等深线以深的区域III中, NO_3~--N、SRP全年受到南海高盐水的影响。在球形棕囊藻囊体丰度较高的2017年2月至3月,有囊体站位表层的NO_3~--N/SRP显著低于底层(P0.01),无囊体站位表底层的NO_3~--N/SRP之间无显著性差异(P0.05),棕囊藻赤潮的生消可能是导致春季NO_3~--N、SRP表底分布出现差异的主要原因。  相似文献   
34.
本文以硬壳蛤(Mercenariamercenaria)为研究对象,开展了两种类型改性粘土(聚合氯化铝改性粘土MCⅠ,硫酸铝改性粘土MCⅡ)对其急性、亚急性毒性实验。96h急性毒性实验结果显示,MCⅠ和MCⅡ对小规格硬壳蛤[壳长(1.98±0.05)mm,壳高(1.75±0.04)mm]的半致死浓度(LC_(50))分别为4.91和1.85g/L,对大规格硬壳蛤[壳长(5.70±0.15)mm,壳高(5.09±0.13)mm]的LC_(50)分别为5.77和3.40g/L。亚急性毒性实验结果表明:浓度低于1.0g/L的MCⅠ和MCⅡ未对两种规格硬壳蛤的存活产生影响;硬壳蛤滤水率随改性粘土用量增加而降低,其中0.1g/L的MCⅠ和MCⅡ对两种规格硬壳蛤滤水率无影响, 0.5g/L的MCⅡ对两种规格硬壳蛤滤水率均有显著影响(P0.05),而MCⅠ仅对小规格硬壳蛤滤水率有影响;当改性粘土浓度升高至1.0g/L,两种规格硬壳蛤的滤水率均显著低于对照(P0.05)。生长率的结果显示,仅1.0g/L的MCⅠ和MCⅡ显著影响小规格硬壳蛤生长。多年的应用结果表明,现场能有效消除有害赤潮藻华的改性粘土用量为4—10t/km~2,低于本实验中对硬壳蛤产生影响的改性粘土浓度。另外,我国近海实际养殖过程中投放的硬壳蛤通常为1cm左右,大于本研究中的硬壳蛤规格。据此可以推断,改性粘土在现场治理藻华的同时不会对其存活和生长产生不良影响。本研究结果将为改性粘土在近海养殖水域的应用提供科学依据。  相似文献   
35.
本文以球形棕囊藻为实验材料,从营养盐利用及生理生化角度研究了不同氮源对其生长的影响。研究结果表明:球形棕囊藻以尿素为氮源的藻密度以及叶绿素a浓度均高于以NH_4Cl或NaNO_3为氮源的藻密度以及叶绿素a浓度;硝酸盐还原酶(NR)及脲酶(urease)活性表达受培养基中氮源浓度及吸收速率调控,硝酸盐还原酶在以NaNO_3为氮源条件下活性最高,脲酶在以尿素为氮源条件下活性表达最强;通过比较不同条件下硝酸盐还原酶活性及脲酶活性,发现脲酶活性远高于硝酸盐还原酶活性,这可能是以尿素为氮源条件下球形棕囊藻藻密度更高的主要原因。研究还发现,氮饥饿状态的球形棕囊藻对NH_4~+具有很高的初始吸收速率,8h左右将NH_4~+快速吸收耗尽,在随后的实验期间保持着较低且平稳的比生长速率,可见球形棕囊藻能快速吸收氨氮并储存在细胞内,当培养液中氮源耗尽后用于维持细胞的增长。  相似文献   
36.
长江水体溶解态无机氮和磷现状及长期变化特点   总被引:2,自引:0,他引:2  
于2006年2、5、8和11月对长江从攀枝花至河口和上游的两条支流雅砻江和嘉陵江的溶解态无机氮(NO-3-N、NO-2-N和NH+4-N)和磷酸盐(PO43--P)进行了取样调查,同时结合长江营养盐的历史数据,分析了长江水体中溶解态无机氮、磷的长期变化特点。结果表明,长江NO-3-N、NH+4-N、DIN(包括NO-3-N、NO-2-N和NH+4-N)和PO3-4-P浓度从上游到下游显示出增加趋势,但存在季节差异;NO2-N浓度总体较低,在长江中下游(武汉—南京)浓度较高。长江从上游到下游DIN通量的变化主要受径流量的影响,从上游到下游单位面积年产N量逐渐升高;PO3-4-P输送通量从上游往下游呈增加趋势,也主要受径流量控制,但从季节变化来讲,PO3-4-P的月输送通量受其浓度的控制更加明显。自20世纪60年代来,长江水体中NO3--N、NO2--N、DIN和PO3-4-P的浓度都处于缓慢上升趋势,但到80年代上升速度明显加快;不同阶段DIN和34PO-P的季节变化特点也不尽相同,反映了其来源的差异。目前,长江水体中溶解态无机氮、磷浓度与国内及国际河流相比处于中等水平。  相似文献   
37.
We established a budget model of nitrogen (N) inputs and outputs between watersheds and waterbodies to determine the sources of riverine N in the Changjiang (Yangtze) River drainage area. Nitrogen inputs in the budget included N from synthetic fertilizer, biological fixation by leguminous and other crops, wet/dry atmospheric deposition, excreta from humans and animals, and crop residues. The total N input was estimated to be 17.6 Tg, of which 20% or 3.5 Tg N was transported into waterbodies. Of the total N transported into waterbodies, the largest proportion was N from animal waste (26%), followed by N from atmospheric wet/dry deposition (25%), synthetic fertilizer N (17%), N in sewage wastes (17%), N in human waste from rural areas (6%) and industrial wastewater N (9%). We studied the spatial patterns of N inputs and outputs by dividing the Changjiang River drainage area into four sub-basins, from upstream to downstream: the Tongtian River drainage area (TTD, the headwater drainage area, 138 000 km 2 , less disturbed by human activities); the Jinsha River drainage area (JSD, 347 000 km 2 , less disturbed by human activities, approx. 3 500 km upstream of the Changjiang estuary); the Pingshan-Yichang drainage area (PYD, 520 500 km 2 , large-scale human disturbance, about 2 000 km upstream of the Changjiang estuary); and the Yichang-Datong drainage area (YDD, 699 900 km 2 , large-scale human disturbance, approx. 620 km upstream of the Changjiang estuary). The average N input into waterbodies was 2.3, 7.3, 24.1, and 28.2 kg N/ha in the TTD, JSD, PYD, and YDD sub-basins, respectively, suggesting an increase of N-components of more than 10 times from upstream to downstream areas.  相似文献   
38.
To solve nutrient flux and budget among waters with distinct salinity difference for water-saltnutrient budget,a traditional method is to build a stoichiometrically linked steady state model.However,the traditional way cannot cope appropriately with those without distinct salinity difference that parallel to coastline or in a complex current system,as the results would be highly affected by box division in time and space,such as the Changjiang(Yangtze) River estuary(CRE) and adjacent waters(30.75°-31.75°N,122°10′-123°20′E).Therefore,we developed a hydrodynamic box model based on the traditional way and the regional oceanic modeling system model(ROMS).Using data from four cruises in 2005,horizontal,vertical and boundary nutrient fluxes were calculated in the hydrodynamic box model,in which flux fields and the major controlling factors were studied.Results show that the nutrient flux varied greatly in season and space.Water flux outweighs the nutrient concentration in horizontal flux,and upwelling flux outweighs upward diffusion flux in vertical direction(upwelling flux and upward diffusion flux regions overlap largely all the year).Vertical flux in spring and summer are much greater than that in autumn and winter.The maximum vertical flux for DIP(dissolved inorganic phosphate) occurs in summer.Additional to the fluxes of the Changjiang River discharge,coastal currents,the Taiwan Warm Current,and the upwelling,nutrient flux inflow from the southern Yellow Sea and outflow southward are found crucial to nutrient budgets of the study area.Horizontal nutrient flux is controlled by physical dilution and confined to coastal waters with a little into the open seas.The study area acts as a conveyer transferring nutrients from the Yellow Sea to the East China Sea in the whole year.In addition,vertical nutrient flux in spring and summer is a main source of DIP.Therefore,the hydrodynamic ROMS-based box model is superior to the traditional one in estimating nutrient fluxes in a complicated hydrodynamic current system and provides a modified box model approach to material flux research.  相似文献   
39.
胶州湾海水中阴离子表面活性剂的含量及分布   总被引:6,自引:3,他引:6  
根据2003年5月和8月对胶州湾进行的两次现场调查,采用亚甲基蓝分光光度法测定了该海域海水中阴离子表面活性剂含量并初步分析了其分布特点。结果表明,2003年5月胶州湾全湾表层海水中阴离子表面活性剂平均浓度为12.6μg/L,略高于8月份(10.3μg/L);各站位含量有变化,河口及邻近海域站位高于其他站位;表层海水含量高于底层海水。  相似文献   
40.
新型表面活性剂改性粘土去除赤潮藻研究   总被引:11,自引:1,他引:11  
以赤潮异弯藻为主要研究对象,对其在有机高岭土和有机膨润土作用下的去除情况进行了研究。结果表明,以新型阳离子表面活性剂双烷基聚氧乙烯基三季铵盐改性后的粘土用量为0.03g/L时,在24h内对赤潮异弯藻的去除率可以达到100%,而未经改性的同样用量的粘土并没有对赤潮异弯藻表现出去除作用,这表明改性后的粘土对赤潮异弯藻的去除能力得到了显著的提高。同时还对改性粘土去除赤潮异弯藻的絮凝动力学及其对养殖生物日本对虾仔虾的生态毒性情况进行了研究,发现粘土的种类、用量,改性剂的用量及溶液的pH值等因素都能够影响体系的絮凝沉降速率,通过分析各种影响因素发现在粘土体系中引入有机改性剂是提高其除藻能力的主要因素。另外,毒性实验发现所用改性剂对养殖生物的毒性较小,半致死浓度约为61.9mg/L,比传统的季铵盐的毒性降低了50倍左右,是一种较为安全有效的粘土有机改性剂。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号