首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   1篇
大气科学   2篇
地球物理   10篇
地质学   33篇
海洋学   1篇
天文学   4篇
自然地理   2篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   5篇
  2015年   2篇
  2014年   5篇
  2013年   9篇
  2012年   1篇
  2011年   8篇
  2010年   2篇
  2009年   1篇
  2008年   4篇
  2006年   2篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
排序方式: 共有52条查询结果,搜索用时 15 毫秒
41.
The lithology of the studied aquifers has an important effect on their hydrogeologic setting. Moreover, the structural patterns have their imprint on the geologic setting and consequently the hydrogeologic conditions of the area. Lake Nasser recharges the groundwater in the study area by large amount of water increasing the groundwater level. A comparison of the depth to water in the same wells at two different periods (1998 and 2014 ) shows that the depth to water increases with average rise 11.1 m during 16 years. The constructed water table map shows that the groundwater flow is mainly towards the northwest direction reflecting recharge from Lake Nasser. The hydraulic parameters of the Abu Aggag and Sabaya sandstone aquifers are determined in the present work from pumping tests. The transmissivity of the studied aquifers reflects the moderate to high potentiality. The groundwater salinity of the studied aquifers is fresh water and varies from 353 to 983 ppm (part per million) and suitable for all purposes. It increases due to the west direction coinciding with groundwater flow direction. The main result of the present study shows that the seepage water from Lake Nasser attains 17 mcm/year.  相似文献   
42.
The Choghart magnetite-apatite deposit situated in the Bafq district, Central Iran, has been scrutinized for rare earth elements (REEs) by precise geochemical investigation. The Central Iran is a susceptible area of rare earth elements. One of the Choghart’s prominent points is the existence of hydrothermal zones which made prediction of REEs occurrence within the deposit possible. Choghart is placed within felsic volcanic tuffs, rhyolitic rocks, and volcanic sedimentary sections belonging to the lower Cambrian. Abundance and distribution pattern of REEs in Choghart iron deposits reveal a part of deposit formation and its mineralogical modifications. Petrography and mineralogy of the ore body demonstrated two main types of alterations (sodic and calcic) associated with iron ore mineralization in Choghart deposit. The main ore includes a large quantity of massive magnetite in the lower part of Choghart deposit. The minor mineralization involves apatite, pyrite, alkaline amphibole, especially actinolite and tremolite, calcite, talc, quart, monazite, and bastnasite. Geochemical sampling from north–northeast (N-NE) side of the mine denotes the presence of these elements in hydrothermal zones. Statistical populations of the area were categorized by fractal geometry into four main differentiations: host rock type (albitofyre), iron, metasomatose, phosphate zones, and a subset of the phosphate zone which is named high iron high phosphate type. REEs like lanthanum, neodymium, yttrium, and niobium constitute the most quantity of Choghart. Deposit characteristics demonstrate its similarity to Kiruna type. The significant feature of iron oxide-apatite deposits of Kiruna ore type is the existence of monazite inclusions within apatite. These inclusions were also observed within apatite type I and II of Choghart mineralization. Moreover, REEs geochemistry in Choghart deposit was identified by investigation on geochemical data analyses. The analysis represents negative Eu anomaly and further enrichment of light REEs compared to the heavy ones. Chondrite normalized REEs patterns are defined by negative anomalies of Eu, which is the main characteristic of Kiruna ore type. The results showed that REEs concentration in phosphate zone, as a high absorption of REEs, is much higher than metsomatose, albitofyre, and iron zones. REEs distribution in N-NE side of the mine indicated that the contact of iron ore with tailings in N-NW side of the mine leads REEs to be enriched nearly 1% , as well as that of NE with high contents of REEs 1.5% ), which is very significant.  相似文献   
43.
Due to the non-linear coupling between flow and transport equations the simulation of real density driven flow problems requires a lot of computational time and/or heavy equipments. We suggest some approximations and numerical recipes to reduce the CPU costs for these strongly non-linear coupled equations without loss in accuracy.  相似文献   
44.
The present work deals with the groundwater aquifer of the Lower Cretaceous sandstone and its sustainable development in Sinai. The studied aquifer system is the most promising groundwater system in Sinai due to its wide extension, hug storage, and good quality. The objective of this paper aims to elucidate the hydrogeological characteristics of the Lower Cretaceous aquifer. The aquifer system occurs under confined conditions. The top surface of the Lower Cretaceous dips steeply towards the southwest direction with step faults. The average sand percent of the penetrated aquifer attains 54%. The main direction of groundwater flow is generally from southwest and locally is concentric to the center of study area related to the influence of the graben block. The aquifer has a hydraulic gradient generally reaches 0.0011 m/m and attains 0.0028 in central portion of study area. The aquifer parameters (effective porosity, transmissivity, and hydraulic conductivity) increase towards the northeast direction with increasing of the sand percentage. Durov diagram plot revealed that the groundwater has been a final stage evolution represented by a NaCl water type. The groundwater salinity increases towards the central of study area coinciding with groundwater flow. The groundwater salinity of the Lower Cretaceous aquifer is brackish water and varies from 2,510 to 5,256 ppm and unsuitable for drinking and domestic purposes.  相似文献   
45.
The use of electro-osmosis in geotechnical engineering has been considered since 1930. Its application has been tested in several sectors like the fight against rising damp in porous materials, the consolidation of soils as well as the remediation of the soils contaminated by oil and heavy metals, etc. The paper presents an experimental study of the electrokinetic phenomena resulting from the application of an electric field to argillaceous sandstones. The electroosmotic tests required the development of a completely new experimental device composed of a confining cell, of a system of measurement and control of the pH of the electrolyte near the electrodes, of a system of control and measurement of the voltage and current at the edges of the sample, and of a system of measurement of inlet (anodic) and outlet (cathodic) flows. Various boundary conditions are considered with and without control of pH. In addition, a micro structural modelling of the electrokinetic phenomena makes it possible to quantify the electro osmotic conductivity with a good agreement with experiments.  相似文献   
46.
Fracture network modeling is an essential part of the design, development and performance assessment of Enhanced Geothermal Systems. These systems are created from geothermal resources, usually located several kilometers below the surface of the Earth, by establishing a network of connected fractures through which fluid can flow. The depth of the reservoir makes it impossible to make direct measurements of fractures and data are collected from indirect measurements such as geophysical surveys. An important source of indirect data is the seismic event point cloud generated by the fracture stimulation process. Locations of these points are estimated from recorded micro-seismic signals generated by fracture initiation, propagation and slip. This point cloud can be expressed as a set of three-dimensional coordinates with attributes, for example Se ijk ={(x,y,z);?a|x,y,zR,?aI}. We describe two methods for reconstructing realistic fracture trace lines and planes given the point cloud of seismic events data: Enhanced Brute-Force Search and RANSAC. The methods have been tested on a synthetic data set and on the Habanero data set of Geodynamics’ geothermal project in the Cooper Basin of South Australia. Our results show that the RANSAC method is an efficient and suitable method for the conditional simulation of fracture networks.  相似文献   
47.
Traditional flood‐frequency analysis involves the assumption of homogeneity of the flood distribution. However, floods are often generated by heterogeneous distributions composed of a mixture of two or more populations. Differences between the populations may be the result of a number of factors, including seasonal variations in the flood‐producing mechanisms, changes in weather patterns resulting from low‐frequency climate shifts and/or El Niño/La Nina oscillations, changes in channel routing owing to the dominance of within‐channel or floodplain flow, and basin variability resulting from changes in antecedent soil moisture. Not recognizing these physical processes in conventional flood‐frequency analysis probably is the main reason that many frequency distributions do not provide an acceptable fit to flood data. In this paper, we use long‐term hydroclimatic records from the Gila River basin of south‐east and central Arizona in the USA to explore the extent and significance of mixed populations. First, we discuss the probable causes of heterogeneity in the frequency distribution of annual flood and present evidence of its occurrence. Second, we investigate the implications of using various popular homogeneous distributions for predicting peak flows for basins that exhibit mixed population characteristics. Third, we demonstrate how alternative frequency models that explicitly account for floods generated by a mixture of two or more populations are both hydrologically and statistically more appropriate. We illustrate how the selection of the most plausible distribution for flood‐frequency analysis also should be based on hydrological reasoning as opposed to the sole application of the traditional statistical goodness‐of‐fit tests. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
48.
In this research, a simulation was performed for evaluating power production from an abandoned geothermal well as an enhanced geothermal system by injecting a secondary fluid. Abandoned wells, due to lack of fluid or very low transmissivity, are regarded among the low-to moderate-temperature resources that have the potential for heat production without any cost for deep drilling. Accordingly, they are taken as suitable sources of energy. In the present paper, an abandoned geothermal well at Meshkinshahr geothermal field in Sabalan district, northwestern Iran, with 3176 m depth was simulated. The bottom-hole temperature of 148 °C, as well as well casing size, and real thermal gradient for well were applied in the model. A 3D heat transfer simulation model was designed by considering a coaxial pipe as a down-hole heat exchanger between surrounding rocks of the well and injected fluid. Injected fluid to the well with specified pressure and temperature receives heat from rocks surrounding the well, until it reaches the bottom of the well and converts to vapor. The vapor returns to the surface from inner pipe with very low heat loss during its return. The inner pipe is isolated by a thin layer having a low heat conductivity to prevent heat loss from the returned fluid. It was observed that obtained heat in the well depends on temperature profile of the well, injection velocity, and fluid mass flow rate. The model results were optimized by selecting suitable parameters such as inlet injection speed and fluid flow rate to achieve the highest temperature of the fluid returned from the well. A binary power plant was also modeled to determine the extractable power using returned fluid as input using ammonia and isobutene, as working fluids in binary cycle. Finally, electric power of 270 kW was generated from well NWS3 using designed down-hole heat exchanger.  相似文献   
49.
50.
Hydrologic models have increasingly been used in forest hydrology to overcome the limitations of paired watershed experiments, where vegetative recovery and natural variability obscure the inferences and conclusions that can be drawn from such studies. Models are also plagued by uncertainty, however, and parameter equifinality is a common concern. Physically‐based, spatially‐distributed hydrologic models must therefore be tested with high‐quality experimental data describing a multitude of concurrent internal catchment processes under a range of hydrologic regimes. This study takes a novel approach by not only examining the ability of a pre‐calibrated model to realistically simulate watershed outlet flows over a four year period, but a multitude of spatially‐extensive, internal catchment process observations not previously evaluated, including: continuous groundwater dynamics, instantaneous stream and road network flows, and accumulation and melt period spatial snow distributions. Many hydrologic model evaluations are only on the comparison of predicted and observed discharge at a catchment outlet and remain in the ‘infant stage’ in terms of model testing. This study, on the other hand, tests the internal spatial predictions of a distributed model with a range of field observations over a wide range of hydroclimatic conditions. Nash‐Sutcliffe model efficiency was improved over prior evaluations due to continuing efforts in improving the quality of meteorological data collection. Road and stream network flows were generally well simulated for a range of hydrologic conditions, and snowpack spatial distributions were well simulated for one of two years examined. The spatial variability of groundwater dynamics was effectively simulated, except at locations where strong stream–groundwater interactions exist. Model simulations overall were quite successful in realistically simulating the spatiotemporal variability of internal catchment processes in the watershed, but the premature onset of simulated snowmelt for one of the simulation years has prompted further work in model development. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号