首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   2篇
  国内免费   1篇
测绘学   1篇
地球物理   6篇
地质学   10篇
海洋学   4篇
自然地理   1篇
  2021年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2011年   1篇
  2009年   3篇
  2008年   1篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1996年   1篇
  1994年   3篇
  1990年   1篇
  1989年   1篇
  1977年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
11.
A mud volcano LUSI initiated its eruption on 29 May 2006, adjacent to a hydrocarbon exploration well in East Java. Ground subsidence in the vicinity of the LUSI eruptive vent was well recorded by a Synthetic Aperture Radar (SAR) PALSAR onboard the Japanese ALOS satellite. We apply an Interferometric SAR (InSAR) technique on ten PALSAR data scenes, acquired between 19 May 2006 and 21 May 2007, in order to obtain continuous maps of ground displacements around LUSI. Although the displacements in the area closest to the eruptive vent (spatial extension of about 1.5 km) are not detectable because of the erupted mud, all the processed interferograms indicate subsidence in an ellipsoidal area of approximately 4 km (north–south) × 3 km (east–west), centered at the main eruptive vent. In particular, interferograms spanning the first four months until 4 Oct. 2006 and the subsequent 46 days between 4 Oct. 2006 and 19 Nov. 2006 show at least about 70 cm and 80 cm of displacements away from the satellite, respectively. Possible causes of the subsidence, i.e., 1) loading effect of the erupted mud, 2) creation of a cylindrical mud conduit, and 3) pressure decrease and depletion of materials at depth, are investigated. The effects of the first two causes are found to be insufficient to explain the total amount of subsidence observed in the first six months. The third possibility is quantitatively examined using a boundary element approach by modeling the source of deformation as a deflating oblate spheroid. The spheroid is estimated to lie at depths of a few hundred to a thousand meters. The estimated depths are significantly shallower than determined from analyses of erupted mud samples; the difference is explained by presence of significant amount of inelastic deformation including compaction and downward transfer of material.  相似文献   
12.
This paper summarizes the subsurface geology of the recent (both Holocene and latest Pleistocene formations and the buried topography beneath them in and around Tokyo Bay, the type area of the late Quaternary in Japan. Buried abrasion platforms in the buried topography are classified into upper (ca. 0 to ?10 m high) and lower (ca. ?20 to ?40 m) platforms; upper and lower buried river terraces are also distinguished, and are correlated to the subaerial late Pleistocene terraces of Tc1 and Tc2, respectively. A buried valley system is elucidated, of which the trunk valley floor reaches ?70 m in Tokyo and emerges into a flat surface at the shelf edge in the entrance to Tokyo Bay. Approximate dates for these geomorphic surfaces are given. The height of sea level contemporaneous with the buried valley floor (ca. 20,000–15,000 yr BP) is estimated at about ?135 m. The recent formations are divided into two members, upper and lower, by a middle sand bed, in addition to the lowest buried valley floor gravel. The lower member, which is composed of brackish to marine deposits of complicated lithofacies, was accumulated in narrow drowned valleys during the early stage of the Yurakucho (Flandrian) transgression. The middle sand bed is the foreset bed of deltas, which was formed during a slight regression between ca. 11,000 and 10,000 yr BP. The upper member, which consists mainly of widespread homogeneous marine clay and deltaic sand, was accumulated in a wide bay and its embayments during the late stage of the Yurakucho transgression and the following stage of a relatively stable sea level.  相似文献   
13.
宣化小营盘金矿的控矿构造研究   总被引:2,自引:0,他引:2  
本文建立了高等级公路路面排水街沟缘石开孔入水口截水量公式,并据收集的实测资料确定了截水量经验系数的计算式,同时进行了误差计算。为工程设计提供了一个科学的设计计算方法,供应用参考。  相似文献   
14.
The South Pandora and the Tripartite Ridges are active spreading centers located in the northern part of the North Fiji Basin. These spreading centers were surveyed over a distance of 750 km during the NOFI cruise of R/V L'Atalante (August–September 1994) which was conducted in the frame of the french-japanese Newstarmer cooperation project. SIMRAD EM12-dual full coverage swath bathymetric and imagery data as well as airgun 6-channel seismic, magnetics and gravity profiles were recorded along and offaxis from 170°40 E to 178° E. Dredging and piston coring were also performed along and off-axis. The axial domain of the South Pandora Ridge is divided into 5 first-order segments characterized by contrasted morphologies. The average width of the active domain is 20 km and corresponds either to bathymetric highs or to deep elongated grabens. The bathymetric highs are volcanic constructions, locally faulted and rifted, which can obstruct totally the axial valley. The grabens show the typical morphology of slow spreading axes, with two steep walls flanking a deep axial valley. Elongated lateral ridges may be present on both sides of the grabens. Numerous volcanoes, up to several kilometers in diameter, occur on both flanks of the South Pandora Ridge. The Tripartite Ridge consists of three main segments showing a sigmoid shape. Major changes in the direction of the active zones are observed at the segment discontinuities. These discontinuities show various geometrical patterns which suggest complex transform relay zones. Preliminary analysis of seismic reflection profiles suggest that the Tripartite Ridge is a very young feature which propagates into an older oceanic domain characterized by a significant sedimentary cover. By contrast, a very thin to absent sedimentary cover is observed about 100 km on both flanks of the South Pandora Ridge active axis. The magnetic anomaly profiles give evidence of long and continuous lineations, parallel to the South Pandora Ridge spreading axis. According to our preliminary interpretation, the spreading rate would have been very low (8 km/m.y. half rate) during the last 7 Ma. The South Pandora and Tripartite Ridges exhibit characteristics typical of active oceanic ridges: (1) a segmented pattern, with segments ranging from 80 to 100 km in length; (2) an axial tectonic and volcanic zone, 10 to 20 km wide; (3) well-organized magnetic lineations, parallel to the active axis; (4) clear signature on the free-air gravity anomaly map. However, no typical transform fault is observed; instead, complex relay zones are separating first-order segments.  相似文献   
15.
16.
Morphology and tectonics of the Yap Trench   总被引:5,自引:0,他引:5  
We conducted swath bathymetry and gravity surveys the whole-length of the Yap Trench, lying on the southeastern boundary of the Philippine Sea Plate. These surveys provided a detailed morphology and substantial insight into the tectonics of this area subsequent the Caroline Ridge colliding with this trench. Horst and graben structures and other indications of normal faulting were observed in the sea-ward trench seafloor, suggesting bending of the subducting oceanic plate. Major two slope breaks were commonly observed in the arc-ward trench slope. The origin of these slope breaks is thought to be thrust faults and lithological boundaries. No flat lying layered sediments were found in the trench axis. These morphological characteristics suggest that the trench is tectonically active and that subduction is presently occurring. Negative peaks of Bouguer anomalies were observed over the arc-ward trench slope. This indicates that the crust is thickest beneath the arc-ward trench slope because the crustal layers on the convergent two plates overlap. Bouguer gravity anomalies over the northern portion of the Yap Arc are positive. These gravity signals show that the Yap Arc is uplifted by dynamic force, even though dense crustal layers underlie the arc. This overlying high density arc possibly forces the trench to have great water depths of nearly 9000 m. We propose a tectonic evolution of the trench. Subduction along the Yap Trench has continued with very slow rates of convergence, although the cessation of volcanism at the Yap Arc was contemporaneous with collision of the Caroline Ridge. The Yap Trench migrated westward with respect to the Philippine Sea Plate after collision, then consumption of the volcanic arc crust occurred, caused by tectonic erosion, and the distance between the arc and the trench consequently narrowed. Lower crustal sections of the Philippine Sea Plate were exposed on the arc-ward trench slope by overthrusting. Intense shearing caused deformation of the accumulated rocks, resulting in their metamorphism in the Yap Arc.  相似文献   
17.
A procedure is presented to predict the storey where plastic drift dominates in two‐storey buildings under strong ground motion. The procedure utilizes the yield strength and the mass of each storey as well as the peak ground acceleration. The procedure is based on two different assumptions: (1) the seismic force distribution is of inverted triangular form and (2) the rigid‐plastic model represents the system. The first and the second assumptions, respectively, lead to lower and upper estimates of the base shear coefficient under which the drift of the first storey exceeds that of the second storey. The efficiency of the procedure is verified by dynamic response analyses using elasto‐plastic model. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号