首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20597篇
  免费   3860篇
  国内免费   4811篇
测绘学   1043篇
大气科学   4197篇
地球物理   5311篇
地质学   10421篇
海洋学   2366篇
天文学   912篇
综合类   2431篇
自然地理   2587篇
  2024年   55篇
  2023年   312篇
  2022年   883篇
  2021年   988篇
  2020年   863篇
  2019年   947篇
  2018年   1178篇
  2017年   1060篇
  2016年   1244篇
  2015年   940篇
  2014年   1215篇
  2013年   1224篇
  2012年   1130篇
  2011年   1202篇
  2010年   1130篇
  2009年   1137篇
  2008年   1021篇
  2007年   982篇
  2006年   773篇
  2005年   828篇
  2004年   578篇
  2003年   611篇
  2002年   601篇
  2001年   572篇
  2000年   670篇
  1999年   1006篇
  1998年   804篇
  1997年   879篇
  1996年   819篇
  1995年   682篇
  1994年   563篇
  1993年   507篇
  1992年   392篇
  1991年   287篇
  1990年   229篇
  1989年   178篇
  1988年   174篇
  1987年   126篇
  1986年   104篇
  1985年   70篇
  1984年   50篇
  1983年   43篇
  1982年   36篇
  1981年   27篇
  1980年   35篇
  1979年   27篇
  1978年   15篇
  1976年   11篇
  1975年   14篇
  1958年   18篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
952.
953.
The most popular practice for analysing nonstationarity of flood series is to use a fixed single‐type probability distribution incorporated with the time‐varying moments. However, the type of probability distribution could be both complex because of distinct flood populations and time‐varying under changing environments. To allow the investigation of this complex nature, the time‐varying two‐component mixture distributions (TTMD) method is proposed in this study by considering the time variations of not only the moments of its component distributions but also the weighting coefficients. Having identified the existence of mixed flood populations based on circular statistics, the proposed TTMD was applied to model the annual maximum flood series of two stations in the Weihe River basin, with the model parameters calibrated by the meta‐heuristic maximum likelihood method. The performance of TTMD was evaluated by different diagnostic plots and indexes and compared with stationary single‐type distributions, stationary mixture distributions and time‐varying single‐type distributions. The results highlighted the advantages of TTMD with physically‐based covariates for both stations. Besides, the optimal TTMD models were considered to be capable of settling the issue of nonstationarity and capturing the mixed flood populations satisfactorily. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
954.
River confluences and their associated tributaries are key morphodynamic nodes that play important roles in controlling hydraulic geometry and hyporheic water exchange in fluvial networks. However, the existing knowledge regarding hyporheic water exchange associated with river confluence morphology is relatively scarce. On January 14 and 15, 2016, the general hydraulic and morphological characteristics of the confluent meander bend (CMB) between the Juehe River and the Haohe River in the southern region of Xi'an City, Shaanxi Province, China, were investigated. The patterns and magnitudes of vertical hyporheic water exchange (VHWE) were estimated based on a one‐dimensional heat steady‐state model, whereas the sediment vertical hydraulic conductivity (Kv) was calculated via in situ permeameter tests. The results demonstrated that 6 hydrodynamic zones and their extensions were observed at the CMB during the test period. These zones were likely controlled by the obtuse junction angle and low momentum flux ratio, influencing the sediment grain size distribution of the CMB. The VHWE patterns at the test site during the test period mostly showed upwelling flow dominated by regional groundwater discharging into the river. The occurrence of longitudinal downwelling and upwelling patterns along the meander bend at the CMB was likely subjected to the comprehensive influences of the local sinuosity of the meander bend and regional groundwater discharge and finally formed regional and local flow paths. Additionally, in dominated upwelling areas, the change in VHWE magnitudes was nearly consistent with that in Kv values, and higher values of both variables generally occurred in erosional zones near the thalweg paths of the CMB, which were mostly made up of sand and gravel. This was potentially caused by the erosional and depositional processes subjected to confluence morphology. Furthermore, lower Kv values observed in downwelling areas at the CMB were attributed to sediment clogging caused by local downwelling flow. The confluence morphology and sediment Kv are thus likely the driving factors that cause local variations in the VHWE of fluvial systems.  相似文献   
955.
Stable isotopes in precipitation are useful tracers to strengthen understanding of climate change and hydrological processes. In this study, the moisture sources of 190 precipitation events in Beijing were analysed using the Hybrid Single‐particle Lagrangian Integrated Trajectory model, based on which we studied the relation between variations in precipitation δ18O and dynamics in moisture sources and atmospheric circulation in seasonal and interannual timescales. Categorization of 7 groups of moisture sources was performed, among which oceanic moisture sources presented lower δ18O in precipitation than continental moisture sources. The results show that seasonal variations of precipitation δ18O were caused by changes of moisture sources. In summer, moisture from proximal oceans dominated vapour transport to Beijing due to increasing monsoon strength and resulted in a relatively small variation of precipitation δ18O. At the interannual timescale, the variations of δ18O in summer precipitation were related to dynamics in oceanic moistures, showing depleted values when the contribution of oceanic moistures, especially the proportion of long‐distance oceanic moisture, was high. Further analysis indicated that changes of oceanic moisture sources were controlled by the strength of summer monsoons. These findings address the complexity of moisture sources in midlatitude monsoon areas and suggest that isotopic signals in precipitation have the potential to deduce changes in moisture sources and atmospheric circulation and can therefore serve for palaeoclimate reconstruction.  相似文献   
956.
High‐P (HP) eclogite and associated garnet–omphacite granulite have recently been discovered in the Mulantou area, northeastern Hainan Island, South China. These rocks consist mainly of garnet, omphacite, hornblende, quartz and rutile/ilmenite, with or without zoisite and plagioclase. Textural relationships, mineral compositions and thermobarometric calculations demonstrate that the eclogite and garnet–omphacite granulite share the same three‐stage metamorphic evolution, with prograde, peak and retrograde P?T conditions of 620–680°C and 8.7–11.1 kbar, 820–860°C and 17.0–18.2 kbar, and 700–730°C and 7.1–8.5 kbar respectively. Sensitive high‐resolution ion microprobe U–Pb zircon dating, coupled with the identification of mineral inclusions in zircon, reveals the formation of mafic protoliths before 355 Ma, prograde metamorphism at c. 340–330 Ma, peak to retrograde metamorphism at c. 310–300 Ma, and subsequent pegmatite intrusion at 295 Ma. Trace element geochemistry shows that most of the rocks have a MORB affinity, with initial εNd values of +2.4 to +6.7. As with similar transitional eclogite–HP granulite facies rocks in the thickened root in the European Variscan orogen, the occurrence of relatively high P?T metamorphic rocks of oceanic origin in northeastern Hainan Island suggests Carboniferous oceanic subduction leading to collision of the Hainan continental block, or at least part of it, with the South China Block in the eastern Palaeo‐Tethyan tectonic domain.  相似文献   
957.
Previous studies have shown that shallow groundwater in arid regions is often not in equilibrium with near‐surface boundary conditions due to human activities and climate change. This is especially the case where the unsaturated zone is thick and recharge rate is limited. Under this nonequilibrium condition, the unsaturated zone solute profile plays an important role in estimating recent diffuse recharge in arid environments. This paper combines evaluation of the thick unsaturated zone with the saturated zone to investigate the groundwater recharge of a grassland in the arid western Ordos Basin, NW China, using the soil chloride profiles and multiple tracers (2H, 18O, 13C, 14C, and water chemistry) of groundwater. Whereas conventional water balance and Darcy flux measurements usually involve large errors in recharge estimations for arid areas, chloride mass balance has been widely and generally successfully used. The results show that the present diffuse recharge beneath the grassland is 0.11–0.32 mm/year, based on the chloride mass balance of seven soil profiles. The chloride accumulation age is approximately 2,500 years at a depth of 13 m in the unsaturated zone. The average Cl content in soil moisture in the upper 13 m of the unsaturated zone ranges from 2,842 to 7,856 mg/L, whereas the shallow groundwater Cl content ranges from 95 to 351 mg/L. The corrected 14C age of shallow groundwater ranges from 4,327 to 29,708 years. Stable isotopes show that the shallow groundwater is unrelated to modern precipitation. The shallow groundwater was recharged during the cold and wet phases of the Late Pleistocene and Holocene humid phase based on palaeoclimate, and consequently, the groundwater resources are nonrenewable. Due to the limited recharge rate and thick unsaturated zone, the present shallow groundwater has not been in hydraulic equilibrium with near‐surface boundary conditions in the past 2,500 years.  相似文献   
958.
959.
960.
The influences of electron screening (ES) and electron energy correction (EEC) are investigated by superstrong magnetic field (SMF). We also discuss in detail the discrepant factor between our results and those of Fushiki, Gudmundsson and Pethick (FGP) in SMF. The results show that SMF has only a slight effect on ES when B < 109 T on the surfaces of most neutron stars. Whereas for some magnetars, SMF influence ES greatly when B > 109 T . For instance, due to SMF the ES potential may be increased about 23.6% and the EEC may be increased about 4 orders of magnitude at ρ/μe = 1.0×106 mol/cm3 and T9 = 1. On the other hand, the discrepant factor shows that our results are in good agreement with FGP's when B < 109 T . But the difference will be increased with increasing SMF.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号