首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3013篇
  免费   1269篇
  国内免费   16篇
测绘学   64篇
大气科学   37篇
地球物理   1989篇
地质学   1255篇
海洋学   193篇
天文学   508篇
自然地理   252篇
  2021年   32篇
  2020年   59篇
  2019年   197篇
  2018年   196篇
  2017年   290篇
  2016年   329篇
  2015年   345篇
  2014年   367篇
  2013年   419篇
  2012年   293篇
  2011年   274篇
  2010年   256篇
  2009年   162篇
  2008年   215篇
  2007年   153篇
  2006年   110篇
  2005年   111篇
  2004年   96篇
  2003年   107篇
  2002年   93篇
  2001年   82篇
  2000年   86篇
  1999年   16篇
  1998年   1篇
  1997年   1篇
  1994年   3篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1986年   1篇
排序方式: 共有4298条查询结果,搜索用时 15 毫秒
991.
The Gossendorf volcanic body is the only one in the Styrian basin that shows extensive hydrothermal alteration. K‐Ar dating of primary volcanic biotite and alteration products (alunite) suggests that the emplacement of the volcanic body and hydrothermal alteration took place synchronously, 15 Ma ago. The stable isotope compositions of the alteration products such as opal, barite, pyrite and alunite combined with crystallographia investigations indicate temperatures between 150 and 200 °C for the formation of the alteration zones. The calculated stable isotopic compositions of the parent fluid, responsible for the alteration, show an exogene marine component, which interacted with the host rock. Sulphur isotopic compositions of sulphur, sulphides and sulphates indicate disequilibrium, and progressive oxidation. This fact, combined with the mineral zonation of the alteration zone, reflects not only change in the pH but also change in the fO2 of the ascending fluids.  相似文献   
992.
Eclogites characterized by a garnet + clinopyroxene + orthopyroxene + sanidine + rutile assemblage are reported for the first time in the eastern Bangong suture, central Tibet (China). Garnet and sanidine are exsolved from clinopyroxene. Al‐exchange barometer for orthopyroxene and garnet and K concentrations in clinopyroxene indicate a peak pressure of ~4 GPa. The occurrence of these ultrahigh‐pressure rocks implies the subduction of continental crust to a depth of >130 km along the eastern Bangong suture zone during the Early Jurassic. The denudation of these ultrahigh‐pressure metamorphic rocks could have provided a significant source for the Jurassic turbidites in the western Bangong ocean basin.  相似文献   
993.
Successful applications of stochastic models for simulating and predicting daily stream temperature have been reported in the literature. These stochastic models have been generally tested on small rivers and have used only air temperature as an exogenous variable. This study investigates the stochastic modelling of daily mean stream water temperatures on the Moisie River, a relatively large unregulated river located in Québec, Canada. The objective of the study is to compare different stochastic approaches previously used on small streams to relate mean daily water temperatures to air temperatures and streamflow indices. Various stochastic approaches are used to model the water temperature residuals, representing short‐term variations, which were obtained by subtracting the seasonal components from water temperature time‐series. The first three models, a multiple regression, a second‐order autoregressive model, and a Box and Jenkins model, used only lagged air temperature residuals as exogenous variables. The root‐mean‐square error (RMSE) for these models varied between 0·53 and 1·70 °C and the second‐order autoregressive model provided the best results. A statistical methodology using best subsets regression is proposed to model the combined effect of discharge and air temperature on stream temperatures. Various streamflow indices were considered as additional independent variables, and models with different number of variables were tested. The results indicated that the best model included relative change in flow as the most important streamflow index. The RMSE for this model was of the order of 0·51 °C, which shows a small improvement over the first three models that did not include streamflow indices. The ridge regression was applied to this model to alleviate the potential statistical inadequacies associated with multicollinearity. The amplitude and sign of the ridge regression coefficients seem to be more in agreement with prior expectations (e.g. positive correlation between water temperature residuals of different lags) and make more physical sense. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
994.
Estimated at ~58 Ma in duration, the Sturtian snowball Earth (ca. 717–659 Ma) is one of the longest‐known glaciations in Earth history. Surprisingly few uncontroversial lines of evidence for glacial incisions associated with such a protracted event exist. We report here multiple lines of geological field evidence for deep but variable glacial erosion during the Sturtian glaciation. One incision, on the scale of several kilometres, represents the deepest incision documented for snowball Earth; another much more modest glacial valley, however, suggests an erosion rate similar to sluggish Quaternary glaciers. The heterogeneity in snowball glacial incisions reported here and elsewhere was likely influenced by actively extending horst‐and‐graben topography associated with the breakup of supercontinent Rodinia.  相似文献   
995.
Ecosystem services provided by depressional wetlands on the coastal plain of the Chesapeake Bay watershed (CBW) have been widely recognized and studied. However, wetland–groundwater interactions remain largely unknown in the CBW. The objective of this study was to examine the vertical interactions of depressional wetlands and groundwater with respect to different subsurface soil characteristics. This study examined two depressional wetlands with a low‐permeability and high‐permeability soil layer on the coastal plain of the CBW. The surface water level (SWL) and groundwater level (GWL) were monitored over 1 year from a well and piezometer at each site, respectively, and those data were used to examine the impacts of subsurface soil characteristics on wetland–groundwater interactions. A large difference between the SWL and GWL was observed at the wetland with a low‐permeability soil layer, although there was strong similarity between the SWL and GWL at the wetland with a high‐permeability soil layer. Our observations also identified a strong vertical hydraulic gradient between the SWL and GWL at the wetland with a high‐permeability soil layer relative to one with a low‐permeability soil layer. The hydroperiod (i.e., the total time of surface water inundation or saturation) of the wetland with a low‐permeability soil layer appeared to rely on groundwater less than the wetland with a high‐permeability soil layer. The findings showed that vertical wetland–groundwater interactions varied with subsurface soil characteristics on the coastal plain of the CBW. Therefore, subsurface soil characteristics should be carefully considered to anticipate the hydrologic behavior of wetlands in this region.  相似文献   
996.
A new discrete fracture model is introduced to simulate the steady‐state fluid flow in discontinuous porous media. The formulation uses a multi‐layered approach to capture the effect of both longitudinal and transverse permeability of the discontinuities in the pressure distribution. The formulation allows the independent discretisation of mesh and discontinuities, which do not need to conform. Given that the formulation is developed at the element level, no additional degrees of freedom or special integration procedures are required for coupling the non‐conforming meshes. The proposed model is shown to be reliable regardless of the permeability of the discontinuity being higher or lower than the surrounding domain. Four numerical examples of increasing complexity are solved to demonstrate the efficiency and accuracy of the new technique when compared with results available in the literature. Results show that the proposed method can simulate the fluid pressure distribution in fractured porous media. Furthermore, a sensitivity analysis demonstrated the stability regarding the condition number for wide range values of the coupling parameter.  相似文献   
997.
998.
The shear behavior at the interface between the soil and a structure is investigated at the macroscale and particle‐scale levels using a 3‐dimensional discrete element method (DEM). The macroscopic mechanical properties and microscopic quantities affected by the normalized interface roughness and the loading parameters are analyzed. The macro‐response shows that the shear strength of the interface increases as the normalized roughness of the interface increases, and stress softening and dilatancy of the soil material are observed in the tests that feature rough interfaces. The particle‐scale analysis illustrates that a localized band characterized by intense shear deformation emerges from the contact plane and gradually expands as shearing progresses before stabilizing at the residual stress state. The thickness of the localized band is affected by the normalized roughness of the interface and the normal stress, which ranges between 4 and 5 times that of the median grain diameter. A thicker localized band is formed when the soil has a rough shearing interface. After the localized band appears, the granular material structuralizes into 2 regions: the interface zone and the upper zone. The mechanical behavior in the interface zone is representative of the interface according to the local average stress analysis. Certain microscopic quantities in the interface zone are analyzed, including the coordination number and the material fabric. Shear at the interface creates an anisotropic material fabric and leads to the rotation of the major principal stress.  相似文献   
999.
The main objective of this research was to analyse the effect of soil management on soil sealing and on soil water content under contrasting tillage practices and its influence on corn yield. The experimental research was carried out in a field cultivated with irrigated corn differentiated into three zones representing a gradient of soil texture (Z1, Z2, and Z3, i.e., increasingly coarser). Two plots under different soil management practices (conventional intensive tillage, CT, and no‐tillage, NT) were selected in each zone. The susceptibility to sealing of each soil and the steady infiltration rates were evaluated in the laboratory subjecting the soils to rainfall simulation applied at an intensity of 25 mm h?1. In addition, soil porosity under each treatment was quantified. Soil water content (0–90 cm depth) was determined gravimetrically at the beginning and the end of the growing cycle and at the surface (0–5 cm) during three growing seasons and continuously at two depths (5–15 and 50–60 cm) during the last growing cycle. Soil water content was simulated using the SIMPEL model, which was calibrated for the experimental conditions. Corn yield and above‐ground biomass were also analysed. Significant differences in soil sealing among zones, with decreasing soil sealing for coarser textures, and treatments were observed with infiltration rates that were near twice in NT than in CT, being the effect of soil cover significant in the reduction of soil detachment and soil losses. NT showed higher soil water content than CT, especially in the surface layers. Above‐ground biomass production was smaller in CT than in NT, and in the areas with higher sealing susceptibility was 30% to 45% smaller than in other zones, reaching the smallest values in Z1. A similar reduction in corn yield was observed between treatments being smaller in CT than in NT. No‐tillage has been confirmed as an effective technique that benefits soil physical properties as well as crop yields in relation to CT, being its impact greater in soils susceptible to sealing.  相似文献   
1000.
Analytical solutions for contaminant transport in a non‐uniform flow filed are very difficult and relatively rare in subsurface hydrology. The difficulty is because of the fact that velocity vector in the non‐uniform flow field is space‐dependent rather than constant. In this study, an analytical model is presented for describing the three‐dimensional contaminant transport from an area source in a radial flow field which is a simplest case of the non‐uniform flow. The development of the analytical model is achieved by coupling the power series technique, the Laplace transform and the two finite Fourier cosine transform. The developed analytical model is examined by comparing with the Laplace transform finite difference (LTFD) solution. Excellent agreements between the developed analytical model and the numerical model certificate the accuracy of the developed model. The developed model can evaluate solution for Peclet number up to 100. Moreover, the mathematical behaviours of the developed solution are also studied. More specifically, a hypothetical convergent flow tracer test is considered as an illustrative example to demonstrate the three‐dimensional concentration distribution in a radial flow field. The developed model can serve as benchmark to check the more comprehensive three‐dimensional numerical solutions describing non‐uniform flow contaminant transport. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号