首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2884篇
  免费   49篇
  国内免费   49篇
测绘学   71篇
大气科学   355篇
地球物理   599篇
地质学   988篇
海洋学   152篇
天文学   669篇
综合类   15篇
自然地理   133篇
  2021年   15篇
  2020年   15篇
  2019年   16篇
  2018年   49篇
  2017年   41篇
  2016年   60篇
  2015年   35篇
  2014年   63篇
  2013年   107篇
  2012年   82篇
  2011年   115篇
  2010年   89篇
  2009年   121篇
  2008年   133篇
  2007年   115篇
  2006年   93篇
  2005年   119篇
  2004年   98篇
  2003年   82篇
  2002年   93篇
  2001年   80篇
  2000年   80篇
  1999年   90篇
  1998年   89篇
  1997年   73篇
  1996年   70篇
  1995年   69篇
  1994年   51篇
  1993年   51篇
  1992年   47篇
  1991年   56篇
  1990年   44篇
  1989年   43篇
  1988年   21篇
  1987年   32篇
  1986年   35篇
  1985年   31篇
  1984年   51篇
  1983年   33篇
  1982年   38篇
  1981年   41篇
  1980年   37篇
  1979年   32篇
  1978年   32篇
  1977年   19篇
  1976年   24篇
  1975年   15篇
  1974年   29篇
  1973年   17篇
  1971年   22篇
排序方式: 共有2982条查询结果,搜索用时 31 毫秒
111.
The “Nares Strait problem” represents a debate about the existence and magnitude of left-lateral movements along the proposed Wegener Fault within this seaway. Study of Palaeogene Eurekan tectonics at its shorelines could shed light on the kinematics of this fault. Palaeogene (Late Paleocene to Early Eocene) sediments are exposed at the northeastern coast of Ellesmere Island in the Judge Daly Promontory. They are preserved as elongate SW–NE striking fault-bounded basins cutting folded Early Paleozoic strata. The structures of the Palaeogene exposures are characterized by broad open synclines cut and displaced by steeply dipping strike-slip faults. Their fold axes strike NE–SW at an acute angle to the border faults indicating left-lateral transpression. Weak deformation in the interior of the outliers contrasts with intense shearing and fracturing adjacent to border faults. The degree of deformation of the Palaeogene strata varies markedly between the northwestern and southeastern border faults with the first being more intense. Structural geometry, orientation of subordinate folds and faults, the kinematics of faults, and fault-slip data suggest a multiple stage structural evolution during the Palaeogene Eurekan deformation: (1) The fault pattern on Judge Daly Promontory is result of left-lateral strike-slip faulting starting in Mid to Late Paleocene times. The Palaeogene Judge Daly basin formed in transtensional segments by pull-apart mechanism. Transpression during progressive strike-slip shearing gave rise to open folding of the Palaeogene deposits. (2) The faults were reactivated during SE-directed thrust tectonics in Mid Eocene times (chron 21). A strike-slip component during thrusting on the reactivated faults depends on the steepness of the fault segments and on their obliquity to the regional stress axes.Strike-slip displacement was partitioned to a number of sub-parallel faults on-shore and off-shore. Hence, large-scale lateral movements in the sum of 80–100 km or more could have been accommodated by a set of faults, each with displacements in the order of 10–30 km. The Wegener Fault as discrete plate boundary in Nares Strait is replaced by a bundle of faults located mainly onshore on the Judge Daly Promontory.  相似文献   
112.
Water culture experiments were conducted to study the response of ten wheat genotypes to external K application (10 mmol KCI dm?3) at seedling stage under saline condition (0 and 100 mmol NaCl dm?3). The data showed that there was an increase in the shoot and root length with the application of external K. The increase was more pronounced under control than under saline conditions. The better performing genotypes under two treatments were Bhitai, NIAB-41, NIAB-I076 and Khirman. The enhanced growth of these genotypes under saline condition might be due to the quick response to external K application, resulting in high K/Na ratio. The results indicated that the genotypes, which have the ability of enhanced K/Na discrimination, might perform better under saline conditions when sufficient potassium is applied in the rooting medium.  相似文献   
113.
This paper investigates the various mechanisms and parameters that are responsible for delivering impulse to a vehicle that is unfortunate enough to detonate a buried mine. Small scale tests are used to examine the effects of air blast or ejected sand in imparting impulse to a plate that is located above the surface of the saturated soil that contains the explosive. Parameters such as confinement, stand off distance, depth of burial of the explosive, density of the soil, and saturation level of the soil are also examined.  相似文献   
114.
This study is concerned with the reconstruction of the palaeoenvironmental history of southeastern Australia for the last ~300 ka by establishing a luminescence chronology of dune sand deposition in the western Murray Basin (South Australia). In the study area, vast fields of palaeodunes, stabilised by vegetation, provide evidence of past environmental change. In total 98 samples were collected from dune sand layers at 13 different dune sections. The time of their deposition was determined using optically stimulated luminescence dating of single quartz grains, accounting for the impact of post-depositional mixing by the use of a finite mixture model. The oldest depositional phase demonstrates that dune sand layers of great antiquity are preserved in the western Murray Basin, ranging up to at least 380 ka. Phases of substantial dune sand deposition were identified for the periods 18–38 ka and 63–72 ka. Older depositional phases also exist, but are poorly resolved due to relatively large errors of the luminescence ages. Aeolian deposition during the last termination and the Holocene is relatively limited, with a slight clustering of ages at the time of the Antarctic Cold Reversal and from 5–8 ka. Two modern ages give evidence of very recent dune sand deposition. Comparison with other palaeoclimate records from the region suggests that phases with high aeolian sedimentation coincide with more arid conditions and breaks in the dune record with more humid phases. Thus, although dune records are often discontinuous and their interpretation in palaeoclimatic terms is not always straightforward, the palaeodunes of the western Murray Basin show a good preservation of phases of aeolian activity and provide useful information for palaeoenvironmental reconstruction.  相似文献   
115.
We report U–Pb zircon ages of c. 700–550 Ma, 262–220 Ma, 47–38 Ma and 15–14 Ma from amphibolites on Naxos Island in the Aegean extensional province of Greece. The zircon has complex internal structures. Based on cathodoluminescence response, zoning and crosscutting relationships a minimum of four zircon growth stages are identified: inherited core, magmatic core, inner metamorphic (?) rim and an outer metamorphic rim. Trace element compositions of the amphibolites suggest igneous differentiation and crustal assimilation. Zircon solubility as a function of saturation temperatures, Zr content and melt composition indicates that the zircon did not originally crystallize in the mafic bodies but was inherited from felsic precursor rocks, and subsequently assimilated into the mafic intrusives during emplacement. Zircon inheritance is corroborated by the complex, xenocrystic nature of the zircon in one sample. Ages of c. 700–550 Ma and 262–220 Ma are assigned to inherited zircon. Available geochemical data suggest that the 15–14 Ma metamorphic rims grew in situ in the amphibolites, corresponding to a high‐grade metamorphic event at this time. However, the geochemical data cannot conclusively establish if the c. 40 Ma zircon rims also grew in situ, or whether they were inherited along with the xenocrystic cores. Two scenarios for emplacement of the mafic intrusives are discussed: (i) Intrusion during late‐Triassic to Jurassic ocean basin development of the Aegean realm, in which case the 40 Ma zircon rims would have grown in situ, and (ii) emplacement in the Miocene as a result mafic underplating during large‐scale extension. In this case, only the 15–14 Ma metamorphic outer rims would have formed in situ in the amphibolitic host rocks.  相似文献   
116.
Coastal lagoons and beach ridges are genetically independent, though non‐continuous, sedimentary archives. We here combine the results from two recently published studies in order to produce an 8000‐year‐long record of Holocene relative sea‐level changes on the island of Samsø, southern Kattegat, Denmark. The reconstruction of the initial mid‐Holocene sea‐level rise is based on the sedimentary infill from topography‐confined coastal lagoons (Sander et al., Boreas, 2015b). Sea‐level index points over the mid‐ to late Holocene period of sea‐level stability and fall are retrieved from the internal structures of a wide beach‐ridge system (Hede et al., The Holocene, 2015). Data from sediment coring, georadar and absolute dating are thus combined in an inter‐disciplinary approach that is highly reproducible in micro‐tidal environments characterised by high sediment supply. We show here that the commonly proximate occurrence of coastal lagoons and beach ridges allows us to produce seamless time series of relative sea‐level changes from field sites in SW Scandinavia and in similar coastal environments.  相似文献   
117.
In East Africa, the feedback between tectonic uplift, erosional denudation and associated possible climate changes is being studied by a multidisciplinary research group, ‘Riftlink’. The group's focus is the Albertine Rift, the northern part of the western branch of the East African Rift System, and in particular the rising Rwenzori Mountains that stretch along the border of the D.R. Congo and Uganda. Major questions relate to the timing of the formation of the Rwenzori Mountains, and whether the height of these mountains (> 5000 m) relates to rift movements in Neogene times, or represents an old basement block that formed a topographic high long before. Though, at first, research concentrated on the eastern (Ugandan) part of the Albertine Rift and Rwenzori Mountains, it has now moved further to the west to the D.R. Congo. A first field‐campaign, covering the area from northern Lake Edward along the rift shoulder up to the Blue Mountains at Lake Albert, was conducted in summer 2009, in cooperation with the Ruwenzori State University of Butembo. Here, we present a brief overview of the field‐campaign, with impressions gathered on the morphology and geology of the study area.  相似文献   
118.
This paper presents a granular computing approach to spatial classification and prediction of land cover classes using rough set variable precision methods. In particular, it presents an approach to characterizing large spatially clustered data sets to discover knowledge in multi-source supervised classification. The evidential structure of spatial classification is founded on the notions of equivalence relations of rough set theory. It allows expressing spatial concepts in terms of approximation space wherein a decision class can be approximated through the partition of boundary regions. The paper also identifies how approximate reasoning can be introduced by using variable precision rough sets in the context of land cover characterization. The rough set theory is applied to demonstrate an empirical application and the predictive performance is compared with popular baseline machine learning algorithms. A comparison shows that the predictive performance of the rough set rule induction is slightly higher than the decision tree and significantly outperforms the baseline models such as neural network, naïve Bayesian and support vector machine methods.  相似文献   
119.
In 2013, Indian summer monsoon witnessed a very heavy rainfall event (>30 cm/day) over Uttarakhand in north India, claiming more than 5000 lives and property damage worth approximately 40 billion USD. This event was associated with the interaction of two synoptic systems, i.e., intensified subtropical westerly trough over north India and north-westward moving monsoon depression formed over the Bay of Bengal. The event had occurred over highly variable terrain and land surface characteristics. Although global models predicted the large scale event, they failed to predict realistic location, timing, amount, intensity and distribution of rainfall over the region. The goal of this study is to assess the impact of land state conditions in simulating this severe event using a high resolution mesoscale model. The land conditions such as multi-layer soil moisture and soil temperature fields were generated from High Resolution Land Data Assimilation (HRLDAS) modelling system. Two experiments were conducted namely, (1) CNTL (Control, without land data assimilation) and (2) LDAS, with land data assimilation (i.e., with HRLDAS-based soil moisture and temperature fields) using Weather Research and Forecasting (WRF) modelling system. Initial soil moisture correlation and root mean square error for LDAS is 0.73 and 0.05, whereas for CNTL it is 0.63 and 0.053 respectively, with a stronger heat low in LDAS. The differences in wind and moisture transport in LDAS favoured increased moisture transport from Arabian Sea through a convectively unstable region embedded within two low pressure centers over Arabian Sea and Bay of Bengal. The improvement in rainfall is significantly correlated to the persistent generation of potential vorticity (PV) in LDAS. Further, PV tendency analysis confirmed that the increased generation of PV is due to the enhanced horizontal PV advection component rather than the diabatic heating terms due to modified flow fields. These results suggest that, two different synoptic systems merged by the strong interaction of moving PV columns resulted in the strengthening and further amplification of the system over the region in LDAS. This study highlights the importance of better representation of the land surface fields for improved prediction of localized anomalous weather event over India.  相似文献   
120.
The spatial distribution of trace gases exhibit large spatial heterogeneity over the Indian region with an elevated pollution loading over densely populated Gangetic Plains (IGP). The contending role and importance of anthropogenic emissions and meteorology in deciding the trace gases level and distribution over Indian region, however, is poorly investigated. In this paper, we use an online regional chemistry transport model (WRF/Chem) to simulate the spatial distribution of trace gases over Indian region during one representative month of only three meteorological seasons namely winter, spring/summer and monsoon. The base simulation, using anthropogenic emissions from SEAC4RS inventory, is used to simulate the general meteorological conditions and the realistic spatial distribution of trace gases. A sensitivity simulation is conducted after removing the spatial heterogeneity in the anthropogenic emissions, i.e., with spatially uniform emissions to decouple the role of anthropogenic emissions and meteorology and their role in controlling the distribution of trace gases over India. The concentration levels of Ozone, CO, SO2 and NO2 were found to be lower over IGP when the emissions are uniform over India. A comparison of the base run with the sensitivity run highlights that meteorology plays a dominant role in controlling the spatial distribution of relatively longer-lived species like CO and secondary species like Ozone while short-lived species like NOX and SO2 are predominantly controlled by the spatial variability in anthropogenic emissions over the Indian region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号