首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   3篇
大气科学   1篇
地球物理   15篇
地质学   22篇
海洋学   13篇
自然地理   5篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   4篇
  2012年   6篇
  2011年   5篇
  2010年   6篇
  2009年   2篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2005年   3篇
  2002年   5篇
  2001年   1篇
  1998年   2篇
  1997年   1篇
  1992年   1篇
  1984年   1篇
  1981年   1篇
排序方式: 共有56条查询结果,搜索用时 250 毫秒
21.
Long-term, net offshore bar migration is a common occurrence on many multiple-barred beaches. The first stage of the process involves the generation of a longshore bar close to the shoreline that oscillates about a mean position for some time, followed by a stage of net offshore migration across the upper shoreface, and finally a stage of decaying bar form through loss of sediment volume at the outer boundary of the upper shoreface. The phenomenon has been previously documented in the Netherlands, the USA, the Canadian Great Lakes, and in New Zealand, but our present understanding of the morphodynamic processes and sediment transport pathways involved in bar decay is limited. In this paper, long-term, net offshore bar migration is investigated at Vejers Beach, located on the North Sea coast of Denmark where offshore bar migration rates are of the order of 45–55 m a−1. A wave height transformation model confirmed that the decay of the outer bar results in increased wave heights and undertow speeds at the more landward bar potentially causing this bar to speed up its offshore migration. The causes for outer bar decay were investigated through field measurements of sediment transport at the decaying bar and at a position further seaward on the lower shoreface. The measurements showed that a cross-shore transport convergence exists between the bar and the lower shoreface and that the loss of sediment involved in bar decay is associated with a longshore directed transport by non-surf zone processes. At Vejers, and possibly elsewhere, the net offshore migration of bars and the subsequent loss of sand during bar decay is an important part of the beach and shoreface sediment budget.  相似文献   
22.
The formation of an inner nearshore bar was observed during a high‐energy event at the sandy beach of Vejers, Denmark. The bar accreted in situ during surf zone conditions and the growth of the bar was associated with the development of a trough landward of the bar. Measurements of hydrodynamics and sediment fluxes were obtained from electromagnetic current meters and optical backscatter sensors. These process measurements showed that a divergence in sediment transport occurred at the location of the developing trough, and observed gradients in cross‐shore net sediment flux were consistent with the morphological development. The main cause for the flux gradients were cross‐shore gradients in offshore‐directed mean current (undertow) speed which depended upon local relative wave height and local bed slope. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
23.
An extensive previously published (Hughes et al. Mar Geol 355, 88–97, 2014) field data set representing the full range of micro-tidal beach states (reflective, intermediate and dissipative) is used to investigate swash saturation. Two models that predict the behavior of saturated swash are tested: one driven by standing waves and the other driven by bores. Despite being based on entirely different premises, they predict similar trends in the limiting (saturated) swash height with respect to dependency on frequency and beach gradient. For a given frequency and beach gradient, however, the bore-driven model predicts a larger saturated swash height by a factor 2.5. Both models broadly predict the general behavior of swash saturation evident in the data, but neither model is accurate in detail. While swash saturation in the short-wave frequency band is common on some beach types, it does not always occur across all beach types. Further work is required on wave reflection/breaking and the role of wave-wave and wave-swash interactions to determine limiting swash heights on natural beaches.  相似文献   
24.
In this study, the decadal evolution of a washover fan on the west coast of Denmark is examined from its initial generation in 1990 until 2015. Since its inception, the bare and flat washover fan surface has recovered and accreted slowly due to re-activation by overwash during surges and due to aeolian activity and dune formation, stimulated by vegetation growth. The volume of sand on the washover has increased steadily at an average rate of about 23 m3/yr per unit length of shoreline, and a total of 175,000 m3 of sand is now deposited on the fan, while at the same time the shoreline has receded by some 250 m. The evolution can be divided into three stages: 1) An initiation phase when storm surge levels and energetic wave conditions caused a breach in the foredunes and overwash processes formed a washover fan with a relatively low elevation above mean sea level; 2) An initial recovery phase during which waves supplied sand to the fan during frequent overwash activity and winds transported this sand into marginal dunes surrounding the fan; and 3) A later recovery phase when the surface of the fan had accreted to a level where vegetation could survive and trap sediment into new foredune growth across the fan. The rate of accretion has been overall linear but scales with neither annual overwash frequency, nor with aeolian transport potential. Instead, the linear accretion is more closely related to the steady onshore migration of nearshore bars that weld to the beach and provide a sand supply for transfer to the fan. The fan evolution demonstrates the importance of washover fans in preserving barrier resilience during transgressional phases caused by increasing mean sea level. © 2019 John Wiley & Sons, Ltd.  相似文献   
25.
The evolution of nephelinitic melts in equilibrium with mica-bearing liquidus assemblages and melting relations have been studied on two silica-undersaturated joins of the KAlSiO4– Mg2SiO4– Ca2SiO4– SiO2– F system at atmospheric pressure by quench runs in sealed platinum capsules. Fluorine has been added to the batch compositions by the direct exchange of fluorine for oxygen (2F = O2−). The first join is the pseudo-ternary Forsterite – Diopside – KAlSiO3F2 system. Forsterite, diopside, F-phlogopite and leucite crystallisation fields and a fluoride-silicate liquid immiscibility solvus are present on the liquidus surface of the join. Sub-liquidus and sub-solidus phases include akermanite, cuspidine, spinel, fluorite and some other minor fluorine phases. The second system is the pseudo-binary Akermanite – F-phlogopite join that intersects the Forsterite – Diopside – KAlSiO3F2 join. Akermanite, forsterite, diopside, F-phlogopite, leucite and cuspidine are found to crystallise on the join. Forsterite (fo) and leucite (lc) are related to F-phlogopite (phl) by a reaction with the fluorine-bearing liquid: fo + lc + l = phl, and the reaction proceeds until forsterite or leucite are completely consumed. The reaction temperature and resulting phase association depend on batch composition. Thus, leucite is not stable in the sub-solidus of the Akermanite – F-phlogopite join, but is preserved in a part of the Forsterite – Diopside – KAlSiO3F2 system where forsterite reacts out, or does not crystallise at all. The phlogopite-in reaction has an important effect on the composition of the coexisting liquid. The liquids initially saturated in forsterite evolve to extremely Ca rich, larnite-normative residuals. The experimental data show that larnite-normative melilitolites can crystallise from evolved melilititic melts generated from “normal” melanephelinitic parental magmas with no normative larnite. The evolution towards melilitites requires fractionation of phlogopite-bearing assemblages under volatile pressure. Received: 3 June 1997 / Accepted: 5 January 1998  相似文献   
26.
Abstract

A major surface feature of the Greenland Sea during winter is the frequent eastward extension of sea ice south of 75°N and an associated embayment to the north. These features are nominally connected with the East Greenland Current, and both the promontory and the embayment are readily apparent on climatic ice charts. However, there are significant changes in these features on time‐scales as short as a few days. Using a combination of satellite microwave images (SSM/I) of ice cover, meteorological data and in situ velocity, temperature and salinity records, we relate the ice distribution and its changes to the developing structure and circulation of the upper ocean during winter 1988–1989. Our measurements illustrate the preconditioning that leads to convective overturn, which in turn brings warmer water to the surface and results in the rapid disappearance of ice. In particular, the surface was cooled to the freezing point by early December and the salinity then increased through ice formation (about 0.016 m d‐1) and brine rejection. Once the vertical density gradient was sufficiently eroded, a period of high heat flux (>300 W m‐2) in late January provided enough buoyancy loss to convectively mix the upper water column to at least 200 m. We estimate vertical velocities at about 3 cm s‐1 downward during the initial sinking. The deepening of the thermocline raised surface temperatures by over 1°C resulting in nearly 1.5 × 105 km2 of ice‐melt within two days. Average rates of ice retreat are about 11 km d‐1 southwestward, generally consistent with a wind‐driven flow. Comparison of hydrographic surveys from before and after the overturning indicate the fresh water was advected out of the area, possibly to the south and east of our moorings.  相似文献   
27.
28.
29.
This paper examines the processes responsible for the morphodynamics of an intertidal swash bar at Skallingen, Denmark, during seven successive storms (one with a large surge of +3·02 m DNN). During this period a subtidal bar migrated landward onto the foreshore and continued to migrate across the intertidal zone as a swash bar. The onshore migration of the inner subtidal bar resulted from the erosion of sediment from the upper foreshore and dune ramp during the large storm surge that was transported seaward, causing the landward displacement of the bar through accretion on the landward slope. The magnitude and direction of suspended sediment transport within the intertidal zone, and more specifically at and close to the crest of the swash bar, varied with the ratio of both the significant (Hs) and average (Havg) wave heights to the water depth (hcr) at the swash bar crest (the local depth minimum). The transition between onshore and offshore suspended sediment transport was associated with the average wave of the incident distribution breaking on the swash bar crest (Havgh ≈ 0·33). While the onshore‐directed transport was largest at infragravity frequencies, sediment resuspension was best explained by the skewed accelerations under the surf bores. Offshore transport was dominated by the cross‐shore mean currents (undertow) that developed when the significant wave of the distribution broke on the swash bar crest (Hsh ≈ 0·33) and weakened as the average wave of the distribution started to break at the crest (Havgh ≈ 0·33) and the surf zone approached saturation. In contrast to subtidal bars, the swash bar at Skallingen exhibited a divergent behaviour with respect to the cross‐shore position of the breaker zone, migrating onshore when the average wave broke seaward of the crest and migrating offshore when the average wave broke landward of the crest. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
30.
This paper deals with a field experiment, combining the push–pull and tracer tests, conducted under natural gradient conditions at the international Oslo airport. The studied aquifer, showing very complex hydrogeological settings, has been contaminated by a jet fuel spill. The tracer solutes—bromide, toluene, o-xylene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene and naphthalene, have been injected into the plume. Their migration and changes in concentration of the electron acceptors and metabolic by-products have been monitored. Fast removal of both the non-reactive tracer as well as the aromatic organics has been observed. The tracer pulse could only be detected 2 m downgradient from the injection points. At this point, toluene and o-xylene have been completely removed, however, trimethylbenzenes and naphthalene have been detected. Their depletion, based on calculations of available electron acceptors, can, to a large extent, be accounted for intrinsic biodegradation, with Fe(III) and sulphate reductions as the major controlling processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号