首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   14篇
  国内免费   3篇
测绘学   2篇
大气科学   1篇
地球物理   26篇
地质学   21篇
海洋学   7篇
天文学   11篇
综合类   2篇
  2021年   4篇
  2020年   5篇
  2019年   2篇
  2018年   3篇
  2017年   4篇
  2016年   4篇
  2015年   6篇
  2014年   2篇
  2013年   1篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2007年   2篇
  2005年   4篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2000年   1篇
  1998年   2篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1991年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有70条查询结果,搜索用时 15 毫秒
21.
Harutaka  Sakai  Minoru  Sawada  Yutaka  Takigami  Yuji  Orihashi  Tohru  Danhara  Hideki  Iwano  Yoshihiro  Kuwahara  Qi  Dong  Huawei  Cai  Jianguo  Li 《Island Arc》2005,14(4):297-310
Abstract   Newly discovered peloidal limestone from the summit of Mount Qomolangma (Mount Everest) contains skeletal fragments of trilobites, ostracods and crinoids. They are small pebble-sized debris interbedded in micritic bedded limestone of the Qomolangma Formation, and are interpreted to have been derived from a bank margin and redeposited in peri-platform environments. An exposure of the Qomolangma detachment at the base of the first step (8520 m), on the northern slope of Mount Qomolangma was also found. Non-metamorphosed, strongly fractured Ordovician limestone is separated from underlying metamorphosed Yellow Band by a sharp fault with a breccia zone. The 40Ar–39Ar ages of muscovite from the Yellow Band show two-phase metamorphic events of approximately 33.3 and 24.5 Ma. The older age represents the peak of a Barrovian-type Eo-Himalayan metamorphic event and the younger age records a decompressional high-temperature Neo-Himalayan metamorphic event. A muscovite whole-rock 87Rb–86Sr isochron of the Yellow Band yielded 40.06 ± 0.81 Ma, which suggests a Pre-Himalayan metamorphism, probably caused by tectonic stacking of the Tibetan Tethys sediments in the leading margin of the Indian subcontinent. Zircon and apatite grains, separated from the Yellow Band, gave pooled fission-track ages of 14.4 ± 0.9 and 14.4 ± 1.4 Ma, respectively. These new chronologic data indicate rapid cooling of the hanging wall of the Qomolangma detachment from approximately 350°C to 130°C during a short period (15.5–14.4 Ma).  相似文献   
22.
Abstract   The Lower Sorachi Group of the Sorachi–Yezo Belt in central Hokkaido, Japan is a peculiar accretionary complex characterized by numerous occurrences of greenstones (metabasalts and diabases), which are mostly composed of aphyric basalts. Clinopyroxene-rich phenocryst assemblage in phyric basalts is different from olivine–plagioclase assemblage in mid-oceanic ridge basalts (MORB). The greenstones are geochemically uniform, and show a lower-Ti trend than MORB in an FeO*/MgO-TiO2 diagram, mostly plotting on the island arc tholeiite (IAT) field in a TiO2−10MnO−10P2O5 diagram. In a MORB-normalized spider diagram, the greenstones show a flat pattern from P to Y, which are lower than those of normal mid-oceanic ridge basalt (N-MORB). These indicate that the greenstones were derived by a higher degree of partial melting from a depleted mantle similar to a N-MORB source, and experienced olivine–clinopyroxene fractional crystallization. However, a positive spike of Nb in the spider diagram cannot be explained, and may be attributed to mantle heterogeneity. These characteristics are analogous to those of oceanic plateau basalts (OPB) such as in Ontong Java Plateau, Manihiki Plateau and Nauru Basin, suggesting that the greenstones in the Lower Sorachi Group are of oceanic plateau origin. The present study proposes new field divisions to distinguish OPB from MORB in the conventional FeO*/MgO–TiO2 and TiO2−10MnO−10P2O5 diagrams.  相似文献   
23.
Abstract   The present paper describes the newly discovered early Miocene unconformity in the northern Noto Peninsula, on the Japan Sea side, central Japan. The unconformity marks the boundary between an early Miocene non-marine to marine succession and a more extensive, late early to early middle Miocene marine succession, and contains a time gap of an order of 1 million years or less from 18 Ma or earlier to 17 Ma. The early Miocene succession likely represents an early phase of marine transgression and initial slow rifting. The overlying early to early middle Miocene succession records the climax of the opening of the Japan Sea at ca  16 Ma with widespread, rapid subsidence of the Japan Arc. The unconformity between the two transgressive successions may represent a global sealevel fall or, more likely, crustal uplifting because no upward-shallowing or regressive facies remains between the two successions. Early Miocene unconformities that are thought to be correlative with this unconformity in the northern Noto Peninsula occur in places along the Japan Sea coast of Sakhalin and Japan. They are likely to have been produced during rifting in response to upwelling of asthenospheric mantle, although more accurate age constraints are necessary to evaluate this idea.  相似文献   
24.
A large volume of middle Miocene basaltic rocks is widely distributed across the back-arc region of Northeast Japan, including around the Dewa Mountains. Petrological research has shown that basaltic rocks of the Aosawa Formation around the Dewa Mountains were generated as a result of the opening of the Sea of Japan. To determine the precise ages of the middle Miocene basaltic magmatism, we conducted U–Pb and fission-track (FT) dating of a rhyolite lava that constitutes the uppermost part of the Aosawa Formation. In addition, we estimated the paleostress field of the volcanism using data from a basaltic dike swarm in the same formation. The rhyolite lava yields a U–Pb age of 10.73 ±0.22 Ma (2σ) and a FT age of 10.6 ±1.6 Ma (2σ), and the paleostress analysis suggests a normal-faulting stress regime with a NW–SE-trending σ3-axis, a relatively high stress ratio, and a relatively high magma pressure. Our results show that the late Aosawa magmatism occurred under NW–SE extensional stress and ended at ~ 11 Ma.  相似文献   
25.
Plutonic rocks in the southern Abukuma Mountains include gabbro and diorite, fine‐grained diorite, hornblende–biotite granodiorite (Ishikawa, Samegawa, main part of Miyamoto and Tabito, Kamikimita and Irishiken Plutons), biotite granodiorite (the main part of Hanawa Pluton and the Torisone Pluton), medium‐ to coarse‐grained biotite granodiorite and leucogranite, based on the lithologies and geological relations. Zircon U–Pb ages of gabbroic rocks are 112.4 ±1.0 Ma (hornblende gabbro, Miyamoto Pluton), 109.0 ±1.1 Ma (hornblende gabbro, the Hanawa Pluton), 102.7 ±0.8 Ma (gabbronorite, Tabito Pluton) and 101.0 ±0.6 Ma (fine‐grained diorite). As for the hornblende–biotite granodiorite, zircon U–Pb ages are 104.2 ±0.7 Ma (Ishikawa Pluton), 112.6 ±1.0 Ma (Tabito Pluton), 105.2 ±0.8 Ma (Kamikimita Pluton) and 105.3±0.8 Ma (Irishiken Pluton). Also for the medium‐ to fine‐grained biotite granodiorite, zircon U–Pb ages are 106.5±0.9 Ma (Miyamoto Pluton), 105.1 ±1.0 Ma (Hanawa Pluton) and the medium‐ to coarse‐grained biotite granodiorite has zircon U–Pb age of 104.5 ±0.8 Ma. In the case of the leucogranite, U–Pb age of zircon is 100.6 ±0.9 Ma. These data indicate that the intrusion ages of gabbroic rocks and surrounding granitic rocks ranges from 113 to 101 Ma. Furthermore, K–Ar ages of biotite and or hornblende in the same rock samples were dated. Accordingly, it is clear that these rocks cooled down rapidly to 300 °C (Ar blocking temperature of biotite for K–Ar system) after their intrusion. These chronological data suggest that the Abukuma plutonic rocks in the southern Abukuma Mountains region uplifted rapidly around 107 to 100 Ma after their intrusion.  相似文献   
26.
A calculation method for determining the amount of Rn isotopes and daughter products at the start of measurement (CRAS) is proposed as a more accurate means of estimating the initial Rn concentration in soil gas. The CRAS utilizes the decay law between 222Rn and 220Rn isotopes and the daughter products 218Po and 216Po, and is applicable to α-scintillation counter measurements. As Rn is both inert and chemically stable, it is useful for fault investigation based on the soil gas geochemistry. However, the total number of α particles emitted by the decay of Rn has generally been considered to be proportional to the initial Rn concentration, without considering the gas condition with respect to radioactive equilibrium. The CRAS method is shown to be effective to derive Rn concentration for soil gases under both nonequilibrium conditions, in which the total number of decays increases with time, and equilibrium conditions, which are typical of normal soil under low gas flux. The CRAS method in conjunction with finite difference method simulation is applied to the analysis of two active fault areas in Japan, and it is demonstrated that this combination could detect the sharp rises in 222Rn concentrations associated with faults. The method also allows the determination of fault geometry near the surface based on the asymmetry variation of the Rn concentration distribution when coupled with a numerical simulation of 222Rn transport. The results for the new method as applied to the two case studies are consistent with the data collected from the geological survey. It implies that the CRAS method is suitable for investigating the fault system and interstitial gas mobility through fractures. The present analyses have also demonstrated that high Rn concentrations require the recent and repeated accumulation of 222Rn parents (230Th and 226Ra) in fault gouges through deep gas release during fault movement.  相似文献   
27.
Detrital zircon multi‐chronology combined with provenance and low‐grade metamorphism analyses enables the reinterpretation of the tectonic evolution of the Cretaceous Shimanto accretionary complex in Southwest Japan. Detrital zircon U–Pb ages and provenance analysis defines the depositional age of trench‐fill turbidites associated with igneous activity in provenance. Periods of low igneous activity are recorded by youngest single grain zircon U–Pb ages (YSG) that approximate or are older than the depositional ages obtained from radiolarian fossil‐bearing mudstone. Periods of intensive igneous activity recorded by youngest cluster U–Pb ages (YC1σ) that correspond to the younger limits of radiolarian ages. The YC1σ U–Pb ages obtained from sandstones within mélange units provide more accurate younger depositional ages than radiolarian ages derived from mudstone. Determining true depositional ages requires a combination of fossil data, detrital zircon ages, and provenance information. Fission‐track ages using zircons estimated YC1σ U–Pb ages are useful for assessing depositional and annealing ages for the low‐grade metamorphosed accretionary complex. These new dating presented here indicates the following tectonic history of the accretionary wedge. Evolution of the Shimanto accretionary complex from the Albian to the Turonian was caused by the subduction of the Izanagi plate, a process that supplied sediments via the erosion of Permian and Triassic to Early Jurassic granitic rocks and the eruption of minor amounts of Early Cretaceous intermediate volcanic rocks. The complex subsequently underwent intensive igneous activity from the Coniacian to the early Paleocene as a result of the subduction of a hot and young oceanic slab, such as the Kula–Pacific plate. Finally, the major out‐of‐sequence thrusts of the Fukase Fault and the Aki Tectonic Line formed after the middle Eocene, and this reactivation of the Shimanto accretionary complex as a result of the subduction of the Pacific plate.  相似文献   
28.
Abstract: Seven zircon fission-track ages and 30 magnetic susceptibilities were measured on welded pyroclastic rocks from the Bogopol and Sijanov Groups of the Cretaceous to Paleogene volcanic rocks in the southeastern part of the eastern Sikhote Alin volcano-plutonic belt, Far East Russia. The fission-track ages range from 42. 7 Ma to 64. O Ma which indicate that both the groups are of Early Paleogene time. Two thirds of the samples from the Bogopol Group have high magnetic susceptibility values, more than 3 A- 10-3 SI unit, which imply that they are of the magnetite–series, whereas the samples from the Sijanov Group show 3 A- 10-3 to 8 A- 10-5 SI unit which suggest this group of probably the ilmenite-series.
The Paleogene age and high magnetic susceptibility of the Bogopol Group are quite similar to the Paleogene igneous rocks of the San'in belt, Southwest Japan. This suggests, taking accounts of the opening of the Japan Sea, that the eastern Sikhote Alin volcano-plutonic belt continued to the San'in Belt, and that the Paleogene igneous rocks along the Japan Sea coast of Northeast Japan were situated along the volcanic front of the eastern Sikhote Alin volcano-plutonic belt.  相似文献   
29.
Magnetic fluctuations observed in the magnetosheath and the outer magnetosphere with Ogo-5 during 6 months from November 1968, are analyzed to examine the resonance theory that monochromatic waves excited outside the magnetosphere are transmitted in the compressional mode into the magnetosphere, being transmitted further along the closed field lines in the torsional mode and are finally observed as long-period pcs on the Earth's surface. Ten observed results on the wave characteristics of the fluctuations including variance, spectrum, relation to the plasma stream, integrated power, longitudinal dependence are obtained and summarized. The fluctuations in the magnetosheath are found to be dominantly Alfvénic. Several pieces of evidence to support the resonance theory are found.  相似文献   
30.
Greenstone bodies emplaced upon or into clastic sediments crop out ubiquitously in the Hidaka belt (early Paleogene accretionary and collisional complexes exposed in the central part of northern Hokkaido, NE Japan), but the timing and setting of their emplacement has remained poorly constrained. Here, we report new zircon U–Pb ages for the sedimentary complexes surrounding these greenstones. The Hidaka Supergroup in the northern Hidaka belt is divided into four zones from west to east: zones S, U, and R, which contain in situ greenstones; and zone Y, which does not. Detrital zircons in zones S, U, and R have early Eocene U–Pb ages (55–47 Ma) and these strata are intruded by early Eocene granites (46–45 Ma), indicating that they were deposited between 55 and 46 Ma. Therefore, in situ greenstones in the northern Hidaka belt can only be explained by the subduction of the Izanagi–Pacific Ridge during 55–47 Ma. In contrast, the deposition of zone Y (the Yubetsu Group, younging to the west) began by 73–71 Ma, indicating that the accretionary prism in front of the paleo-Kuril arc formed at the same time as that in the Idonnappu zone and grew continuously until 48 Ma. The plutonic rocks that intruded the Hidaka belt are roughly divided into three stages: (1) early Eocene granites intruded the northern Hidaka belt at 46–45 Ma, during subduction of the Izanagi–Pacific Ridge; (2) the upper sequence of the Hidaka metamorphic zone was metamorphosed by magmatism at 40–37 Ma associated with the collision of the paleo-Kuril arc and NE Asia; and (3) younger granites intruded the entire Hidaka belt at 20–17 Ma in association with asthenospheric upwelling caused by back-arc expansion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号