首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   2篇
  国内免费   2篇
测绘学   14篇
大气科学   1篇
地球物理   9篇
地质学   59篇
海洋学   9篇
天文学   25篇
综合类   2篇
自然地理   5篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   4篇
  2018年   7篇
  2017年   5篇
  2016年   7篇
  2015年   7篇
  2014年   4篇
  2013年   8篇
  2012年   7篇
  2011年   5篇
  2010年   5篇
  2009年   7篇
  2008年   3篇
  2007年   5篇
  2006年   4篇
  2005年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   5篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1974年   2篇
  1973年   1篇
排序方式: 共有124条查询结果,搜索用时 31 毫秒
81.
In the Sub-Himalayan zone, the frontal Siwalik range abuts against the alluvial plain with an abrupt physiographic break along the Himalayan Frontal Thrust (HFT), defining the present-day tectonic boundary between the Indian plate and the Himalayan orogenic prism. The frontal Siwalik range is characterized by large active anticline structures, which were developed as fault propagation and fault-bend folds in the hanging wall of the HFT. Fault scarps showing surface ruptures and offsets observed in excavated trenches indicate that the HFT is active. South of the HFT, the piedmont zone shows incipient growth of structures, drainage modification, and 2–3 geomorphic depositional surfaces. In the hinterland between the HFT and the MBT, reactivation and out-of-sequence faulting displace Late Quaternary–Holocene sediments. Geodetic measurements across the Himalaya indicate a ~100-km-wide zone, underlain by the Main Himalayan Thrust (MHT), between the HFT and the main microseismicity belt to north is locked. The bulk of shortening, 15–20 mm/year, is consumed aseismically at mid-crustal depth through ductile by creep. Assuming the wedge model, reactivation of the hinterland faults may represent deformation prior to wedge attaining critical taper. The earthquake surface ruptures, ≥240 km in length, interpreted on the Himalayan mountain front through paleoseismology imply reactivation of the HFT and may suggest foreland propagation of the thrust belt.  相似文献   
82.
The projected properties of some triaxial mass models are studied. The models are flattened versions of a set of spherical models. They are constructed by addition of two spherical harmonic terms to a spherical model. The projected properties exhibit strong correlations, when a model with a given set of intrinsic parameters is viewed in all possible orientations. The correlation plots appear to carry signatures of the intrinsic shape of the mass model. Rigorous shape estimates, using Bayesian statistics, yield satisfactory results for the test cases.  相似文献   
83.
The 20 October 1991 Uttarkashi earthquake killed over a thousand people and caused extensive damage to property in the Garhwal Himalaya region. The body wave magnitude of the earthquake was 6.6, and the fault plane solution indicates reverse faulting. The hypocenrre was located at a focal depth of about 12 km between the Chail and Jutogh Thrusts, but movement propagated southward along the Jamak–Gangori Fault (JGF) and Dunda fault (DF) which are developed as blind faults related to the growing Uttarkashi antiform.  相似文献   
84.
A geometrical study is made of magnetohydrostatic equilibrium of a perfectly conducting fluid considering magnetic field vector, constant along each current line. We have discussed the geometrical behaviour of Lorentz surfaces, field lines and current lines.Former address: Department of Mathematics, Banaras Hindu University, Varanasi, India.  相似文献   
85.
This study has been carried out to analyze and report the river bank erosion hazard due to morphometric change of the Ganga River (also called Ganges in English) in the upstream of Farakka Barrage up to Rajmahal. Morphometric parameters, such as, Sinuosity, Braidedness Index, and percentage of the island area to the total river reach area were measured for the year of 1955, 1977, 1990, 2001, 2003, and 2005 from LANDSAT and IRS satellite images. The analysis shows that there is a drastic increase in all of those parameters over the period of time. This study has found that bank failure is because of certain factors like soil stratification of the river bank, presence of hard rocky area (Rajmahal), high load of sediment and difficulty of dredging and construction of Farakka Barrage as an obstruction to the natural river flow. For the increasing sinuosity, the river has been engulfing the large areas of left bank every year. The victims are mostly Manikchak and Kaliachak-II blocks of Malda district, with a loss of around 1,670 ha agricultural land since 1977. Temporal shift measurements for the river reach between Farakka and Rajmahal has been done with help of 22 cross-sections in this reach. Erosion impact area has also been estimated to emphasize the devastating nature of the hazard.  相似文献   
86.
The influence of topographic effects in optical satellite imagery is not investigated very extensively in the Himalayan terrain. The topographic variability causes a problem of differential illumination due to steep and varying slopes in rugged Himalayan terrain. Therefore, topographic corrections are essential for qualitative and quantitative analysis of snow cover applications. The present paper discusses the implementation of different topographic correction models on AWiFS sensor onboard IRS P6 satellite images and the qualitative and quantitative comparative analysis in detail. Both the Lambertian and non-Lambertian assumptions have been considered in the present analysis with the aim to explore best suitable empirical model for rugged terrain. The main topographic methods implemented are:
•  C-correction
•  Minneart corrections
•  Civco’s modified version of cosine correction
•  two-stage normalization and
•  slope matching technique.
Lambertian assumptions are found to be very unrealistic over Himalayan terrain as these lead to either underestimation or overestimation of physical parameters significantly both on sunlit slopes as well as the slopes away from the Sun. This problem is overcome by considering non-Lambertian assumption. Minneart constant and C-correction coefficients for all AWiFS satellite bands are estimated using regression analysis. All the results due to topographic effects are investigated qualitatively and quantitatively using four criteria namely visual analysis, validation with field measurements (in-situ observations), spectral reflectance of training samples of snow on the south and north aspects and graphically. The visual analysis confirms the minimization of three dimensional relief effects in two-stage normalization and slope matching methods and retrieves some of the information under mountain shadow. Due to the very bright surface of snow fields there is likely to be more diffuse reflected light in these areas than over darker vegetated surfaces. The qualitative analysis in other methods does not extract any information on shady slopes. The quantitative validation of topographic results in satellite imagery with in-situ observations shows underestimation of spectral reflectance of snow significantly except for slope matching technique. It is also apparent that although all the topographic methods correct the reflectance of training snow samples on the south and north aspects but most acceptable values are achieved using slope matching. The results obtained from graphical analysis reveal that mean reflectance after all topographic corrections are independent of illumination. This study also suggests that the suitability of topographic models can not be concluded as successful based on single criterion. Slope matching technique is the only technique which satisfies all the four criteria successfully and produces the best result for Himalayan terrain.  相似文献   
87.
The seismically active Northwest (NW) Himalaya falls within Seismic Zone IV and V of the hazard zonation map of India. The region has suffered several moderate (~25), large-to-great earthquakes (~4) since Assam earthquake of 1897. In view of the major advancement made in understanding the seismicity and seismotectonics of this region during the last two decades, an updated probabilistic seismic hazard map of NW Himalaya and its adjoining areas covering 28–34°N and 74–82°E is prepared. The northwest Himalaya and its adjoining area is divided into nineteen different seismogenic source zones; and two different region-specific attenuation relationships have been used for seismic hazard assessment. The peak ground acceleration (PGA) estimated for 10% probability of exceedance in 50 and 10 years at locations defined in the grid of 0.25 × 0.25°. The computed seismic hazard map reveals longitudinal variation in hazard level along the NW Himalayan arc. The high hazard potential zones are centred around Kashmir region (0.70 g/0.35 g), Kangra region (0.50 g/0.020 g), Kaurik-Spitti region (0.45 g/0.20 g), Garhwal region (0.50 g/0.20 g) and Darchula region (0.50 g/0.20 g) with intervening low hazard area of the order of 0.25 g/0.02 g for 10% probability in 50 and 10 years in each region respectively.  相似文献   
88.
Relative abundances of carbon and aluminium with respect to silicon have been calculated in the QSOs PHL957, PKS0237-23, 1331+170, 3C191 and M132. Relative abundance of Fe with respect to Mg has been also calculated in the QSOs 1331+170 and PHL938. The ratiosN(C)/N(Si),N(Al)/N(Si) andN(Fe)/N(Mg) in QSOs considered as a class are (5.5±1.6), (0.13±0.03) and (2.6±1.2), respectively.The ratioN(C)/N(Si) shows a mild trend of increase with decreasing emission redshift. This suggests the possibility that the QSOs might be evolving chemically.  相似文献   
89.
A negative second order work, strain softening, is often noticed in contractant material like sensitive clays. Failure in such clays will lead to the formation of localized deformation zone of intense inelastic strain, known as shear band. Conditions, emergence and inclination of shear band has been very well demonstrated in past decades in different manners, however a definite thickness of shear band is still an open question due to several reasons. Mesh dependency, loss of ellipticity is another challenge associated with finite element analyses for strain softening clays. This paper covers a comprehensive review of classical theories of strain localization and associated limitation. Mesh dependency, ill-possed boundary value problem is addressed using finite element simulation examples and experimental results.  相似文献   
90.
The present study deals with the seasonal variation of temperature, alkalinity and dissolved oxygen in the Sagar lake. Different abiotic and biotic factors were investigated and a diurnal study was made, too. The investigation shows that the surface water values were always higher than the bottom water values. The water temperature ranged from 16.0 to 31.0 °C, carbonate alkalinity ranged from 0.0 to 46.0 mg/1, bicarbonate alkalinity ranged from 62.0 to 138.0 mg/1, dissolved oxygen ranged between 1.6 and 13.2 ppm. The water temperature was found to be positively correlated with carbonate alkalinity while an inverse correlation existed with bicarbonate alkalinity. Dissolved oxygen had a significant positive correlation with carbonate alkalinity, while a negative correlation was observed with bicarbonate alkalinity during all the seasons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号