首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   368篇
  免费   8篇
  国内免费   4篇
测绘学   8篇
大气科学   29篇
地球物理   94篇
地质学   116篇
海洋学   30篇
天文学   68篇
综合类   3篇
自然地理   32篇
  2022年   3篇
  2021年   4篇
  2020年   5篇
  2019年   3篇
  2018年   5篇
  2017年   5篇
  2016年   8篇
  2015年   2篇
  2014年   6篇
  2013年   19篇
  2012年   18篇
  2011年   13篇
  2010年   11篇
  2009年   18篇
  2008年   29篇
  2007年   17篇
  2006年   14篇
  2005年   14篇
  2004年   17篇
  2003年   11篇
  2002年   19篇
  2001年   16篇
  2000年   6篇
  1999年   9篇
  1998年   11篇
  1997年   2篇
  1996年   6篇
  1995年   3篇
  1994年   8篇
  1993年   4篇
  1992年   4篇
  1991年   6篇
  1990年   5篇
  1989年   2篇
  1988年   4篇
  1987年   3篇
  1986年   6篇
  1985年   4篇
  1983年   5篇
  1982年   5篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1977年   4篇
  1975年   4篇
  1974年   1篇
  1973年   2篇
  1970年   2篇
  1966年   2篇
排序方式: 共有380条查询结果,搜索用时 15 毫秒
71.
A new approach to the classification of estuaries is described. The estuary environment classification (EEC) is based on a hierarchical view of the abiotic components that comprise the environments of estuaries. The EEC postulates that climate, oceanic, riverine and catchment factors ‘control’ a hierarchy of processes and broadly determine the physical and biological characteristics of estuaries. The classification differentiates estuaries at four levels of detail. Level 1 differentiates global scale variation based on differences in climatic and oceanic processes, which are discriminated by the factors: latitude, oceanic basins and large landmasses. Level 2 differentiates variation in estuary hydrodynamic processes, which are discriminated by estuary basin morphometry, river and oceanic forcing. Level 3 differentiates variation among estuaries that are due to catchment processes, which are discriminated by catchment geology and catchment land cover. The approach has been applied to all the estuaries in New Zealand using existing data sources. Estuaries were assigned class membership at each level of the classification by applying criteria in the form of decision rules to the database of assignment characteristics. GIS was then used to map the estuaries with classes being defined by colour at any level of the classification. The resulting map provides a multi-scale spatial framework that is suitable for many environmental or conservation management applications.  相似文献   
72.
Methods to identify and subsequently seal surface water loss zones in stream channels were tested by the United States Bureau of Mines at Staub Run, a first-order stream near Frostburg, Maryland, that partially overlies abandoned coal mine workings. Conventional stream gauging was conducted to establish discharge patterns before and after stream sealing. Electromagnetic terrain conductivity surveys were performed within the stream channel to identify zones of increased relative water saturation to depths less than 15 m. Zones of increased conductivity were generally found to be associated with areas exhibiting statistically significant (P 0.05) gauged flow losses. Conversely, zones that exhibited declining conductivity delineated areas where between-station flows were not significantly different. Using this information on potential loss zones, an experimental grouting procedure was applied by injecting an expandable polyurethane grout to a depth less than one meter into the alluvial streambed over a 180-m section of the stream channel. Before grouting, the study section exhibited a 24 I/sec flow loss; first-phase grouting reduced this to a 14 I/sec flow loss; with a second-phase grouting the losses were only 3 I/sec.  相似文献   
73.
River ice break‐up is known to have important morphological, ecological and socio‐economic effects on cold‐regions river environments. One of the most persistent effects of the spring break‐up period is the occurrence of high‐water events. A return‐period assessment of maximum annual nominal water depths occurring during the spring break‐up and open‐water season at 28 Water Survey of Canada hydrometric sites over the 1913–2002 time period in the Mackenzie River basin is presented. For the return periods assessed, 13 (14) stations are dominated by peak events occurring during the spring break‐up (open‐water) season. One location is determined to have a mixed signal. A regime classification is proposed to separate ice‐ and open‐water dominated systems. As part of the regime classification procedure, specific characteristics of return‐period patterns including alignment, and difference between the 2 and 10‐year events are used to identify regime types. A dimensionless stage‐discharge plot allows for a contrast of the relative magnitudes of flows required to generate maximum nominal water‐depth events in the different regimes. At sites where discharge during the spring break‐up is approximately one‐quarter or greater than the magnitude of the peak annual discharge, nominal water depths can be expected to exceed those occurring during the peak annual discharge event. Several physical factors (location, basin area, stream order, gradient, river orientation, and climate) are considered to explain the differing regimes and discussed relative to the major sub‐regions of the MRB. Copyright © 2008 John Wiley & Sons, Ltd and Her Majesty the Queen in right of Canada.  相似文献   
74.
Prediction of windthrow risk to individual or groups of retained trees in harvested stands requires an improved understanding of canopy airflow dynamics. Large-eddy simulations were used to simulate wind-tunnel experiments in two and three dimensions to compare with observations for model validation and to address parameter space considerations for the design of subsequent retention pattern experiments. The three-dimensional simulations were similar to the observed wind-tunnel data for the statistical profiles for but there were greater differences in skewness and kurtosis. These results were obtained using a common leaf-area drag formulation without either skin friction or speed dependent drag that enables scaling with U 0 (ambient wind speed) and h (height of the canopy). This scaling results in a single non-dimensional parameter h/h c where h c (x, y, z) is the momentum range resulting from the canopy drag. The validity of the model scaling was tested using two-dimensional simulations. The irrotational component of the flow (potential flow) was found to be important when defining vertical domain limitations and has significant implications for time dependent flow (i.e. turbulent conditions) when considering retention pattern design. The sudden onset of drag associated with the isolated stand presents some unexpected challenges. The horizontal scales of the shearing instabilities were simulated in two dimensions and found to range between 2h for early times to 7h for later times. The early-time horizontal scales are in the range of logical retention pattern scales and as such need to be taken into account as part of the parameter space, i.e. a range of retention pattern lengths need consideration.  相似文献   
75.
We examine the electromagnetic coupling of a GPS antenna–monument pair in terms of its simulated affect on long GPS coordinate time series. We focus on the Earth and Polar Observing System (POLENET) monument design widely deployed in Antarctica and Greenland in projects interested particularly in vertical velocities. We base our tests on an absolute robot calibration that included the top ~0.15 m of the monument and use simulations to assess its effect on site coordinate time series at eight representative POLENET sites in Antarctica over the period 2000.0–2011.0. We show that the neglect of this calibration would introduce mean coordinate bias, and most importantly for velocity estimation, coordinate noise which is highly sensitive to observation geometry and hence site location and observation period. Considering only sub-periods longer than 2.5 years, we show vertical site velocities may be biased by up to ±0.4 mm/year, and biases up to 0.2 mm/year may persist for observation spans of 8 years. Changing between uniform and elevation-dependent observation weighting alters the time series but does not remove the velocity biases, nor does ambiguity fixing. The effect on the horizontal coordinates is negligible. The ambiguities fixed series spectra show noise between flicker and random walk with near-white noise at the highest frequencies, with mean spectral indices (frequencies <20 cycles per year) of approximately −1.3 (uniform weighting) and −1.4 (elevation-dependent weighting). While the results are likely highly monument specific, they highlight the importance of accounting for monument effects when analysing vertical coordinate time series and velocities for the highest precision and accuracy geophysical studies.  相似文献   
76.
Terry Barker 《Climatic change》2008,89(3-4):173-194
The problem of avoiding dangerous climate change requires analysis from many disciplines. Mainstream economic thinking about the problem has shifted with the Stern Review from a single-discipline focus on cost-benefit analysis to a new inter-disciplinary and multi-disciplinary risk analysis, already evident in the IPCC Third Assessment Report. This shift is more evidence of the failure of the traditional, equilibrium approach in general to provide an adequate understanding of observed behaviour, either at the micro or macro scale. The economics of the Stern Review has been accepted by governments and the public as mainstream economic thinking on climate change, when in some critical respects it represents a radical departure from the traditional treatment. The conclusions regarding economic policy for climate change have shifted from “do little, later” to “take strong action urgently, before it is too late”. This editorial sets out four issues of critical importance to the new conclusions about avoiding dangerous climate change, each of which have been either ignored by the traditional literature or treated in a misleading way that discounts the insights from other disciplines: the complexity of the global energy-economy system (including the poverty and sustainability aspects of development), the ethics of intergenerational equity, the understanding from engineering and history about path dependence and induced technological change, and finally the politics of climate policy.  相似文献   
77.
Future changes in vegetation and ecosystem function of the Barents Region   总被引:1,自引:0,他引:1  
The dynamic vegetation model (LPJ-GUESS) is used to project transient impacts of changes in climate on vegetation of the Barents Region. We incorporate additional plant functional types, i.e. shrubs and defined different types of open ground vegetation, to improve the representation of arctic vegetation in the global model. We use future climate projections as well as control climate data for 1981–2000 from a regional climate model (REMO) that assumes a development of atmospheric CO2-concentration according to the B2-SRES scenario [IPCC, Climate Change 2001: The scientific basis. Contribution working group I to the Third assessment report of the IPCC. Cambridge University Press, Cambridge (2001)]. The model showed a generally good fit with observed data, both qualitatively when model outputs were compared to vegetation maps and quantitatively when compared with observations of biomass, NPP and LAI. The main discrepancy between the model output and observed vegetation is the overestimation of forest abundance for the northern parts of the Kola Peninsula that cannot be explained by climatic factors alone. Over the next hundred years, the model predicted an increase in boreal needle leaved evergreen forest, as extensions northwards and upwards in mountain areas, and as an increase in biomass, NPP and LAI. The model also projected that shade-intolerant broadleaved summergreen trees will be found further north and higher up in the mountain areas. Surprisingly, shrublands will decrease in extent as they are replaced by forest at their southern margins and restricted to areas high up in the mountains and to areas in northern Russia. Open ground vegetation will largely disappear in the Scandinavian mountains. Also counter-intuitively, tundra will increase in abundance due to the occupation of previously unvegetated areas in the northern part of the Barents Region. Spring greening will occur earlier and LAI will increase. Consequently, albedo will decrease both in summer and winter time, particularly in the Scandinavian mountains (by up to 18%). Although this positive feedback to climate could be offset to some extent by increased CO2 drawdown from vegetation, increasing soil respiration results in NEE close to zero, so we cannot conclude to what extent or whether the Barents Region will become a source or a sink of CO2.  相似文献   
78.
Terry Deshler   《Atmospheric Research》2008,90(2-4):223-ICNAA07
Stratospheric aerosol, noted after large volcanic eruptions since at least the late 1800s, were first measured in the late 1950s, with the modern continuous record beginning in the 1970s. Stratospheric aerosol, both volcanic and non-volcanic are sulfuric acid droplets with radii (concentrations) on the order of 0.1–0.5 µm (0.5–0.005 cm− 3), increasing by factors of 2–4 (10–103) after large volcanic eruptions. The source of the sulfur for the aerosol is either through direct injection from sulfur-rich volcanic eruptions, or from tropical injection of tropospheric air containing OCS, SO2, and sulfate particles. The life cycle of non-volcanic stratospheric aerosol, consisting of photo-dissociation and oxidation of sulfur source gases, nucleation/condensation in the tropics, transport pole-ward and downward in the global planetary wave driven tropical pump, leads to a quasi steady state relative maximum in particle number concentration at around 20 km in the mid latitudes. Stratospheric aerosol have significant impacts on the Earth's radiation balance for several years following volcanic eruptions. Away from large eruptions, the direct radiation impact is small and well characterized; however, these particles also may play a role in the nucleation of near tropopause cirrus, and thus indirectly affect radiation. Stratospheric aerosol play a larger role in the chemical, particularly ozone, balance of the stratosphere. In the mid latitudes they interact with both nitrous oxides and chlorine reservoirs, thus indirectly affecting ozone. In the polar regions they provide condensation sites for polar stratospheric clouds which then provide the surfaces necessary to convert inactive to active chlorine leading to polar ozone loss. Until the mid 1990s the modern record has been dominated by three large sulfur-rich eruptions: Fuego (1974), El Chichón (1982) and Pinatubo (1991), thus definitive conclusions concerning the trend of non-volcanic stratospheric aerosol could only recently be made. Although anthropogenic emissions of SO2 have changed somewhat over the past 30 years, the measurements during volcanically quiescent periods indicate no long term trend in non-volcanic stratospheric aerosol.  相似文献   
79.
The photoluminescence properties of synthetic zircon, ZrSiO4, doped with REE3+ (REE = Pr, Sm, Eu, Gd, Dy, Ho, Er) were investigated using combined excitation and emission spectroscopy. All samples showed luminescence characteristics of intra-ion energy transitions, similar to other lanthanide-doped materials. However, the relative intensities were dependent on the energy of excitation and the presence of charge-transfer bands were inferred from excitation spectra. From the data, we conclude that the lanthanides in zircon occur in more than one type of coordination. Energy transfer between different lanthanides was observed in some co-doped samples and emissions that were unassigned in previous studies have been assigned to specific lanthanides based on excitation spectroscopy.  相似文献   
80.
Samples of glauconite, representing different stages of glauconitisation, as well as different formation environments, were analysed for rare earth elements (REE) and other trace elements using a combination of bulk sample and spatially-resolved in situ techniques. The results indicate that the high-sensitivity, spatially-resolved technique of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) produces values up to two orders of magnitude lower than the bulk sample analyses. This suggests that submicroscopic rare earth element-bearing phases are distributed within the glauconite aggregates comprising the bulk samples. Analytical scanning electron microscopy (ASEM) revealed the presence of micrometre-sized grains of apatite and pore filling precipitates of an unidentified (REE, Ca)-phosphate (approximate composition Ca0.3–0.4(Ce0.4La0.1–0.2Nd0.1)PO4) in some glauconite grains.The inherent REE concentrations of the glauconite aggregates (i.e., glauconite crystallites without accidental mechanical inclusions or authigenic, not layer silicate mineral precipitates) was found to be relatively low (e.g., typically less than 100 ppm), and this value decreased with increasing glauconitisation (smectite–mica transformation through a series of recrystallisation processes). These results suggest that the REEs substitute for Ca in the interlayer space of the layer silicate structure and, therefore, the REE content decreases as Ca is progressively removed from the interlayer (smectite–mica transition).LA-ICP-MS, when combined with electron probe microanalysis (EPMA) or ASEM, offers an opportunity to exclude submicroscopic accessory minerals from glauconite trace element analyses, and so produces reliable trace element data for the respective minerals which host those elements.These results illustrate that accessory minerals are difficult to eliminate from clay samples, and that care needs to be taken in the interpretation of clay mineral REE distributions, irrespective of the aggregation state of the studied clay (i.e., whether finely dispersed within the sedimentary rock, or forming millimetre-sized aggregates). Model calculations showed that authigenic apatite associated with the studied green marine clays tends to have higher REE content than “bioapatites”, the total REE content being above 10 000 ppm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号