首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   5篇
  国内免费   3篇
地球物理   33篇
地质学   47篇
海洋学   21篇
天文学   38篇
自然地理   9篇
  2023年   1篇
  2021年   2篇
  2019年   5篇
  2018年   4篇
  2017年   2篇
  2016年   4篇
  2015年   2篇
  2014年   3篇
  2013年   5篇
  2012年   3篇
  2011年   3篇
  2010年   4篇
  2009年   2篇
  2008年   6篇
  2007年   12篇
  2006年   5篇
  2005年   10篇
  2004年   3篇
  2003年   9篇
  2002年   5篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1996年   5篇
  1994年   2篇
  1993年   5篇
  1992年   4篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1981年   4篇
  1980年   1篇
  1979年   5篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
  1972年   1篇
  1971年   3篇
  1970年   1篇
排序方式: 共有148条查询结果,搜索用时 500 毫秒
31.
The sound velocity (V P) of liquid Fe–10 wt% Ni and Fe–10 wt% Ni–4 wt% C up to 6.6 GPa was studied using the ultrasonic pulse-echo method combined with synchrotron X-ray techniques. The obtained V P of liquid Fe–Ni is insensitive to temperature, whereas that of liquid Fe–Ni–C tends to decrease with increasing temperature. The V P values of both liquid Fe–Ni and Fe–Ni–C increase with pressure. Alloying with 10 wt% of Ni slightly reduces the V P of liquid Fe, whereas alloying with C is likely to increase the V P. However, a difference in V P between liquid Fe–Ni and Fe–Ni–C becomes to be smaller at higher temperature. By fitting the measured V P data with the Murnaghan equation of state, the adiabatic bulk modulus (K S0) and its pressure derivative (K S ) were obtained to be K S0 = 103 GPa and K S  = 5.7 for liquid Fe–Ni and K S0 = 110 GPa and K S  = 7.6 for liquid Fe–Ni–C. The calculated density of liquid Fe–Ni–C using the obtained elastic parameters was consistent with the density values measured directly using the X-ray computed tomography technique. In the relation between the density (ρ) and sound velocity (V P) at 5 GPa (the lunar core condition), it was found that the effect of alloying Fe with Ni was that ρ increased mildly and V P decreased, whereas the effect of C dissolution was to decrease ρ but increase V P. In contrast, alloying with S significantly reduces both ρ and V P. Therefore, the effects of light elements (C and S) and Ni on the ρ and V P of liquid Fe are quite different under the lunar core conditions, providing a clue to constrain the light element in the lunar core by comparing with lunar seismic data.  相似文献   
32.
33.
The sea surface emissivity in the infrared region is determined on the basis of data analyses. Net radiation, surface irradiance and other oceanographical and meteorological variables are measured throughout most of the year at the oceanographical observatory tower in Tanabe Bay, Japan. We have found that 0.984±0.004 is a reliable emissivity value from the night time data. Surface emission radiates not from the subsurface water but from the sea surface. The thermal skin layer on the sea surface, however, is disturbed and disappears under high wind speed over 5 m/s through the analyses of the radiation observation using the emissivity value of 0.984. Under low wind speed, the sea surface can be cooler or warmer than the subsurface due to overlying thermal conditions and the skin layer can be neutral as the transient process between them. By using an emissivity value of 0.984, the temperature difference between the sea surface temperature and the temperature determined from surface irradiance that has been reported in the satellite data analyses is found to be reduced by half.  相似文献   
34.
An algorithm is presented to retrieve the concentrations of chlorophyll a, suspended pariclulate matter and yellow substance from normalized water-leaving radiances of the Ocean Color and Temperature Sensor (OCTS) of the Advanced Earth Observing Satellite (ADEOS). It is based on a neural network (NN) algorithm, which is used for the rapid inversion of a radiative transfer procedure with the goal of retrieving not only the concentrations of chlorophyll a but also the two other components that determine the water-leaving radiance spectrum. The NN algorithm was tested using the NASA's SeaBAM (SeaWiFS Bio-Optical Mini-Workshop) test data set and applied to ADEOS/OCTS data of the Northwest Pacific in the region off Sanriku, Japan. The root-mean-square error between chlorophyll a concentrations derived from the SeaBAM reflectance data and the chlorophyll a measurements is 0.62. The retrieved chlorophyll a concentrations of the OCTS data were compared with the corresponding distribution obtained by the standard OCTS algorithm. The concentrations and distribution patterns from both algorithms match for open ocean areas. Since there are no standard OCTS products available for yellow substance and suspended matter and no in situ measurements available for validation, the result of the retrieval by the NN for these two variables could only be assessed by a general knowledge of their concentrations and distribution patterns. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
35.
The orbital structure of trans-neptunian objects (TNOs) in the trans-neptunian belt (Edgeworth-Kuiper belt) and scattered disk provides important clues to understand the origin and evolution of the Solar System. To better characterize these populations, we performed computer simulations of currently observed objects using long-arc orbits and several thousands of clones. Our preliminary analysis identified 622 TNOs, and 65 non-resonant objects whose orbits penetrate that of at least one of the giant planets within 1 Myr (the centaurs). In addition, we identified 196 TNOs locked in resonances with Neptune, which, sorted by distance from the Sun, are 1:1 (Neptune trojans), 5:4, 4:3, 11:8, 3:2, 18:11, 5:3, 12:7, 19:11, 7:4, 9:5, 11:6, 2:1, 9:4, 16:7, 7:3, 12:5, 5:2, 8:3, 3:1, 4:1, 11:2, and 27:4. Kozai resonant TNOs are found inside the 3:2, 5:3, 7:4, and 2:1 resonances. We present detailed general features for the resonant populations (i.e., libration amplitude angles, libration centers, Kozai libration amplitudes, etc.). Taking together the simulations of Lykawka and Mukai [Lykawka, P.S., Mukai, T., 2007. Icarus 186, 331-341], an improved classification scheme is presented revealing five main classes: centaurs, resonant, scattered, detached and classical TNOs. Scattered and detached TNOs (non-resonant) have q (perihelion distance) <37 AU and q>40 AU, respectively. TNOs with 37 AU<q<40 AU occupy an intermediate region where both classes coexist. Thus, there are no clear boundaries between the scattered and detached regions. We also securely identified a total of 9 detached TNOs by using 4-5 Gyr orbital integrations. Classical objects are non-resonant TNOs usually divided into cold and hot populations. Their boundaries are as follows: cold classical TNOs (i?5°) are located at 37 AU<a<40 AU (q>37 AU) and 42 AU<a<47.5 AU (q>38 AU), and hot classical TNOs (i>5°) occupy orbits with 37 AU<a<47.5 AU (q>37 AU). However, a more firm classification is found with i>10° for hot classical TNOs. Lastly, we discuss some implications of our classification scheme comparing all TNOs with our model and other past models.  相似文献   
36.
Classical trans-Neptunian objects (TNOs) are believed to represent the most dynamically pristine population in the trans-Neptunian belt (TNB) offering unprecedented clues about the formation of our Solar System. The long term dynamical evolution of classical TNOs was investigated using extensive simulations. We followed the evolution of more than 17000 particles with a wide range of initial conditions taking into account the perturbations from the four giant planets for 4 Gyr. The evolution of objects in the classical region is dependent on both their inclination and semimajor axes, with the inner (a<45 AU) and outer regions (a>45 AU) evolving differently. The reason is the influence of overlapping secular resonances with Uranus and Neptune (40–42 AU) and the 5:3 (a∼ ∼42.3 AU), 7:4 (a∼ ∼43.7 AU), 9:5 (a∼ ∼44.5 AU) and 11:6 (a∼ ∼ 45.0 AU) mean motion resonances strongly sculpting the inner region, while in the outer region only the 2:1 mean motion resonance (a∼ ∼47.7 AU) causes important perturbations. In particular, we found: (a) A substantial erosion of low-i bodies (i<10°) in the inner region caused by the secular resonances, except those objects that remained protected inside mean motion resonances which survived for billion of years; (b) An optimal stable region located at 45 AU<a<47 AU, q>40 AU and i>5° free of major perturbations; (c) Better defined boundaries for the classical region: 42–47.5 AU (q>38 AU) for cold classical TNOs and 40–47.5 AU (q>35 AU) for hot ones, with i=4.5° as the best threshold to distinguish between both populations; (d) The high inclination TNOs seen in the 40–42 AU region reflect their initial conditions. Therefore they should be classified as hot classical TNOs. Lastly, we report a good match between our results and observations, indicating that the former can provide explanations and predictions for the orbital structure in the classical region.  相似文献   
37.
The melting temperature of Fe–18 wt% Si alloy was determined up to 119 GPa based on a change of laser heating efficiency and the texture of the recovered samples in the laser-heated diamond anvil cell experiments. We have also investigated the subsolidus phase relations of Fe–18 wt% Si alloy by the in-situ X-ray diffraction method and confirmed that the bcc phase is stable at least up to 57 GPa and high temperature. The melting curve of the alloy was fitted by the Simon’s equation, P(GPa)/a = (T m(K)/T 0) c , with parameters, T 0 = 1,473 K, a = 3.5 ± 1.1 GPa, and c = 4.5 ± 0.4. The melting temperature of bcc Fe–18 wt% Si alloy is comparable with that of pure iron in the pressure range of this work. The melting temperature of Fe–18 wt% Si alloy is estimated to be 3,300–3,500 K at 135 GPa, and 4,000–4,200 K at around 330 GPa, which may provide the lower bound of the temperatures at the core–mantle boundary and the inner core–outer core boundary if the light element in the core is silicon.  相似文献   
38.
The Active Variable Stiffness (AVS) system is proposed as a seismic response control system. It actively controls structural characteristics, such as stiffness of a building, to establish a non-resonant state against earthquake excitations, thus suppressing the building's response. It consumes a relatively small amount of energy and maintains the safety of the building in moderate to severe earthquakes. In order to accumulate practical data and investigate them, a building has been constructed as a trial. This paper describes the applied system, the control algorithm, verification of stiffness selection, results of tests for verifying system characteristics, some observed earthquake records and simulation analyses. Responses in controlled and uncontrolled states have been compared to show the effectiveness of the proposed system.  相似文献   
39.
The possible existence of meteoritic spherules was investigated among several silicate spherules separated from oceanic sediments and analyzed by means of INAA (instrumental neutron activation analysis).A 0.72 mg glassy spherule was found to have uniform enrichment of 4 ~ 5 for the refractory REE (rare earth elements) and Sc with substantial depletion of Ce relative to chondritic abundances. This implies that this spherule is meteoritic in origin and that the enrichment of refractory elements was established by high temperature heating in a high O/H environment, possibly at the time of entering the Earth's atmosphere.The other three analyzed spherules showed major and trace element abundances that are consistent with an origin in the oceanic environment.  相似文献   
40.
Tadashi Yamasaki   《Tectonophysics》2004,386(3-4):117-145
Grain-size reduction may be a possible mechanism for the origin of localized deformation in the ductile regime. I investigated the effects of grain-size reduction due to dynamic recrystallization, cataclasis, and syntectonic metamorphic reaction on the stress envelope in the lithospheric mantle during extension by using a simple one-dimensional model. In this model, the lithosphere extends uniformly with a constant strain rate, and a fall in rock strength appears as a decrease in stress. Because grain-size distribution at the onset of extension is unknown, I regarded the steady state grain-size due to dynamic recrystallization as the initial size. Then, I evaluated the maximum effects of grain-size reduction by dynamic recrystallization during extension, and consequently examined the effects of grain-size reduction by cataclasis and metamorphic reaction under conditions when dynamic recrystallization occurs significantly. I find that it is difficult to bring about localized rheological weakening by grain-size reduction owing to dynamic recrystallization. In contrast, grain-size reduction by cataclasis can cause localized weakening during extension. There is a wide-ranging rate of grain-size reduction by means of cataclasis that causes localized weakening just below the Moho. I specified the reaction from spinel-lherzolite to plagioclase-lherzolite that plays a role in grain-size reduction by syntectonic metamorphism. The reaction occurs at depths less than 35 km, which is independent of the initial thermal state of the lithosphere. Localized rheological weakening can occur if the following conditions are satisfied: (1) grain-size before the reaction is greater than 0.7 mm under dry conditions and greater than 0.5 mm under wet conditions, and it decreases down to those values by the reaction; (2) grain-size decreases down to less than initial grain-size, when the dominant deformation mechanism is GSS creep at the onset of extension. It is also noted that dry conditions are more favourable for localized weakening.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号