首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   11篇
  国内免费   1篇
测绘学   6篇
大气科学   15篇
地球物理   26篇
地质学   41篇
海洋学   9篇
天文学   4篇
综合类   2篇
自然地理   11篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   3篇
  2018年   12篇
  2017年   6篇
  2016年   7篇
  2015年   6篇
  2014年   8篇
  2013年   11篇
  2012年   4篇
  2011年   8篇
  2010年   3篇
  2009年   9篇
  2008年   3篇
  2007年   5篇
  2006年   3篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1994年   1篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有114条查询结果,搜索用时 78 毫秒
111.
Natural Resources Research - Two geophysical tools were used to delineate the configuration of the Nubian sandstone aquifer in the study area. Three hundred magnetic points were measured and...  相似文献   
112.
The SPOT image analysis in Muzaffarabad Azad Kashmir,northwest Himalayas,Pakistan reveals that the Kashmir earthquake 2005 triggered a number of coseismic mass movements along the hanging wall block of the Muzaffarabad Fault.The Neelidandi and Langarpura rock falls have been identified as two major reactivated mass movements with an estimated volume of 3.1 × 106m3and 5.76 × 106m3,respectively.The Neelidandi and Langarpura mass movements were initiated during earthquake in the direction of northwest-southeast extension and northeastsouthwest directed thrusting,respectively.The Neelidandi rock fall occurred in sheared cherty dolomites and limestones of the Cambrian Muzaffarabad Formation,whereas the Langarpura rock fall occurred in alternating clays,shales,claystones,siltstones and sandstones of the Miocene Murree Formation.These rock units along the fault are highly fractured and jointed.The geotechnical maps and geological longitudinal profiles show the relationship between the geometrical characteristics and mechanism of these mass movements.Their characteristics were analyzed according to the role of topographic,seismic,geological and tectonic factors.The steep topography,sheared rocks,lithology,coseismic uplift and strong ground shaking of the hanging wall block along Muzaffarabad Fault facilitated the gravity collapse of these mass movements.  相似文献   
113.
Abstract

Based on 16 years of oceanographic and meteorological data the monthly variations of the net heat flux at the air‐sea interface in coastal waters near Jeddah show that the sea gains an average of about 14 ±2 W m?2 from April to October and loses about 79± 4W m?2from November to March. The loss of heat during the winter months is not compensated by the gain during the summer months and therefore leads to an annual average deficit of 25 ± 3 Wm?2. The gain during summer may not favour the formation of a strong seasonal thermocline.  相似文献   
114.
Within Karakoram Himalaya, Hunza River Basin(study area) is unique for a number of reasons: 1) potential impacts of highly concentrated highpitched mountains and glacial ice; 2) the glaciated portions have higher mean altitude as compared to other glaciated landscapes in the Karakoram; 3) this basin occupies varieties of both clean and debriscovered glaciers and/or ice. Therefore, it is imperative to understand the stability of topographic surface and potential implications of fluctuating glacial-ice causing variations in the movement of material from higher to lower elevations. This paper advocates landscape-level hypsometric investigations of glaciated landscape lies between 2280–7850 m elevation above sea level and non-glaciated landscape between 1461–7570 m. An attempt is made to understand intermediate elevations, which disguise the characteristics of glaciated hypsometries that are highly correlated with the Equilibrium Line Altitude(ELA). However, due to data scarcity for high altitude regions especially above 5000 m elevation, literature values for climatic conditions are used to create a relationship between hypsometry and variations in climate and ELA. The largest glaciated area(29.22%) between 5047 to 5555 m lies in the vertical regime of direct snow-accumulation zone and in the horizontal regime of net-accumulation zone(low velocity, net freezing, and no-sliding). In both landscapes, the hypsometric curves are ‘slow beginning' followed by ‘steep progress' and finally reaching a ‘plateau', reflecting the rapid altitudinal changes and the dominance of fluvial transport resulting in the denudation of land-dwelling and the transport of rock/debris from higher to lower altitudes. Reported slight differences in the average normalized bin altitudes against the cumulative normalized area between glaciated and non-glaciated landscapes are an indicator of slightly different land-forms and landform changes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号