首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   0篇
  国内免费   2篇
测绘学   1篇
大气科学   3篇
地球物理   68篇
地质学   36篇
海洋学   3篇
天文学   12篇
自然地理   5篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2013年   3篇
  2012年   2篇
  2011年   5篇
  2010年   4篇
  2009年   4篇
  2008年   4篇
  2007年   4篇
  2006年   8篇
  2005年   5篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2000年   2篇
  1999年   2篇
  1998年   4篇
  1997年   5篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1990年   3篇
  1988年   1篇
  1987年   6篇
  1986年   6篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   5篇
  1979年   1篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
排序方式: 共有128条查询结果,搜索用时 31 毫秒
41.
42.
Small hexagonal and triangular platelets of molybdenite (MoS2), 5 to 25 m in diameter, were identified in phenocrysts and matrix glass of unaltered felsic volcanic rocks from Pantelleria, Italy. The MoS2 occurs commonly in pantellerites (peralkaline rhyolites), rarely in pantelleritic trachytes, and never in trachytes. The occurrence of euhedral MoS2 platelets in all phenocryst phases, in matrix glass, and even in some melt inclusions indicates that MoS2 precipitated directly from the peralkaline melt. Despite MoS2 saturation, the melt (glass) contains greater than 95% of the Mo in Pantellerian rocks: X-ray fluorescence analyses of 20 whole rocks and separated glasses show that whole rocks consistently contain less Mo than corresponding matrix glasses, the differences being in proportion to phenocryst abundances. The Mo contents increase with differentiation from trachytes (2–12 ppm) to pantellerites (15–25 ppm) and correlate positively with incompatible elements such as Th, Y, and Nb. The Mo concentrations, as determined by secondary ion mass spectrometry, are essentially the same in matrix glasses and melt inclusions, showing that Mo did not partition strongly into a volatile fluid phase during outgassing. The high Mo contents of the pantellerites (relative to metaluminous magmas with 1–5 ppm) may be due to several factors: (1) the enhanced stability of highly charged cations (such as Mo6+, U4+, and Zr4+) in peralkaline melts; (2) the rarity of Fe-Ti oxides and litanite into which Mo might normally partition; (3) reduced volatility of Mo in low fO2, H2O-poor (1–2 wt%) peralkaline magmas. Geochemical modeling indicates that the precipitation of MoS2 can be explained simply by the drop in temperature during magmatic differentiation. The occurrence of MoS2 in pantellerites may result from their high Mo concentrations and low redox state (Ni/NiO=-2.5) relative to metaluminous magmas, causing them to reach MoS2 saturation at magmatic temperatures. The apparent absence of MoS2 microphenocrysts in more oxidized, metaluminous rhyolites may indicate that Mo is dissolved primarily as a hexavalent ion in those magmas.  相似文献   
43.
44.
45.
46.
The BK9 kimberlite consists of three overlapping pipes. It contains two dark varieties of massive volcaniclastic kimberlite, informally termed dark volcaniclastic kimberlite (DVK). DVK(ns) is present in the north and south pipes and is interbedded with lenses of basalt breccia at the margins of the pipes. DVK(c) is present within the central pipe where it is overlain by a sequence of basalt breccias with interbedded volcanogenic sediments. The features observed within the DVK units of the BK9 kimberlite provide strong evidence for gas fluidisation of the accumulating pyroclastic material. These include the massive interior of the pipes, marginal epiclastic units, well-dispersed country-rock xenoliths and small-scale heterogeneities in lithic clast abundance. The upper portions of the central pipe provide a record of the transition from pyroclastic eruption and infill to passive epiclastic infilling of the crater, after the eruption has ceased. The wall-rock of the BK9 kimberlite dips inwards and is interpreted as post pipe-fill subsidence of the adjacent country rock. The two DVK units contain interstitial, silt-sized pyroclasts. The DVK(ns) has a higher fraction of former melt and displays evidence of incipient welding, as a result of differences in eruption dynamics. These units demonstrate that whilst DVK is comparable in many respects to MVK and forms part of a spectrum of volcaniclastic rocks formed by fluidisation, it differs in frequently containing silt-sized particles and including agglutinated and welded varieties with a high melt fraction. The DVK varieties, studied here, also have a distinctive hydrothermal assemblage, resulting from the abundance of low-silica accidental lithic clasts. Both the hydrothermal alteration and the abundance of silt-sized particles contribute to the DVKs distinctive dark colour.  相似文献   
47.
48.
A procedure is proposed that employs first-moment estimation (kriging), cross-validation, and response surface analysis to estimate parameters of a generalized covariance function. Results from application of this procedure to two data sets are given.  相似文献   
49.
50.
We report in this and a companion paper [Fentzke, J.T., Janches, D., Sparks, J.J., 2008. Latitudinal and seasonal variability of the micrometeor input function: A study using model predictions and observations from Arecibo and PFISR. Journal of Atmospheric and Solar-Terrestrial Physics, this issue, doi:10.1016/j.jastp.2008.07.015] a complete seasonal study of the micrometeor input function (MIF) at high latitudes using meteor head-echo radar observations performed with the Poker Flat Incoherent Scatter Radar (PFISR). This flux is responsible for a number of atmospheric phenomena; for example, it could be the source of meteoric smoke that is thought to act as condensation nuclei in the formation of ice particles in the polar mesosphere. The observations presented here were performed for full 24-h periods near the summer and winter solstices and spring and autumn equinoxes, times at which the seasonal variability of the MIF is predicted to be large at high latitudes [Janches, D., Heinselman, C.J., Chau, J.L., Chandran, A., Woodman, R., 2006. Modeling of the micrometeor input function in the upper atmosphere observed by High Power and Large Aperture Radars, JGR, 11, A07317, doi:10.1029/2006JA011628]. Precise altitude and radar instantaneous line-of-sight (radial) Doppler velocity information are obtained for each of the hundreds of events detected every day. We show that meteor rates, altitude, and radial velocity distributions have a large seasonal dependence. This seasonal variability can be explained by a change in the relative location of the meteoroid sources with respect to the observer. Our results show that the meteor flux into the upper atmosphere is strongly anisotropic and its characteristics must be accounted for when including this flux into models attempting to explain related aeronomical phenomena. In addition, the measured acceleration and received signal strength distribution do not seem to depend on season; which may suggest that these observed quantities do not have a strong dependence on entry angle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号