首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1559篇
  免费   81篇
  国内免费   37篇
测绘学   45篇
大气科学   124篇
地球物理   298篇
地质学   602篇
海洋学   98篇
天文学   383篇
综合类   10篇
自然地理   117篇
  2023年   5篇
  2022年   9篇
  2021年   40篇
  2020年   36篇
  2019年   38篇
  2018年   47篇
  2017年   45篇
  2016年   56篇
  2015年   48篇
  2014年   51篇
  2013年   80篇
  2012年   62篇
  2011年   77篇
  2010年   82篇
  2009年   115篇
  2008年   84篇
  2007年   101篇
  2006年   87篇
  2005年   57篇
  2004年   81篇
  2003年   54篇
  2002年   57篇
  2001年   50篇
  2000年   39篇
  1999年   35篇
  1998年   36篇
  1997年   14篇
  1996年   12篇
  1995年   19篇
  1994年   14篇
  1992年   14篇
  1991年   5篇
  1989年   9篇
  1987年   13篇
  1986年   6篇
  1985年   4篇
  1984年   7篇
  1983年   6篇
  1982年   8篇
  1981年   8篇
  1980年   6篇
  1978年   4篇
  1977年   5篇
  1975年   5篇
  1974年   5篇
  1973年   4篇
  1972年   3篇
  1971年   3篇
  1969年   5篇
  1968年   3篇
排序方式: 共有1677条查询结果,搜索用时 0 毫秒
51.
52.
Hydrological connectivity is a term often used to describe the internal linkages between runoff and sediment generation in upper parts of catchments and the receiving waters. In this paper, we identify two types of connectivity: direct connectivity via new channels or gullies, and diffuse connectivity as surface runoff reaches the stream network via overland flow pathways. Using a forest road network as an example of a landscape element with a high runoff source strength, we demonstrate the spatial distribution of these two types of linkages in a 57 km2 catchment in southeastern Australia. Field surveys and empirical modelling indicate that direct connectivity occurs primarily due to gully development at road culverts, where the average sediment transport distance is 89 m below the road outlet. The majority of road outlets were characterised by dispersive flow pathways where the maximum potential sediment transport distance is measured as the available hillslope length below the road outlet. This length has a mean value of 120 m for this catchment. Reductions in sediment concentration in runoff plumes from both pathways are modelled using an exponential decay function and data derived from large rainfall simulator experiments in the catchment. The concept of the volume to breakthrough is used to model the potential delivery of runoff from dispersive pathways. Of the surveyed road drains (n=218), only 11 are predicted to deliver runoff to a stream and the greatest contributor of runoff occurs at a stream crossing where a road segment discharges directly into the stream. The methodology described here can be used to assess the spatial distribution and likely impact of dispersive and gullied pathways on in-stream water quality.  相似文献   
53.
We compare high-resolution pollen and chironomid records from the last 15,000 yr in Laguna Facil, southern Chile. Major vegetation and chironomid changes are recorded between ca 14,900 and 14,700 cal. yr BP. During the Lateglacial, changes in the chironomid stratigraphy lag behind changes in the pollen stratigraphy suggesting that the chironomids are responding to changes in the tree canopy or in soil chemistry brought about by vegetational development. At about 7200 cal. yr BP there is a change in the chironomid stratigraphy in advance of changes in the vegetation. This suggests that the response is to regional climatic change. The relatively close correlation of the chironomid and pollen stratigraphies with changes in charcoal concentrations also implicates the importance of fire and/or vulcanism in influencing the dynamics of forest and limnological systems. There is no clear evidence of cooling during the Younger Dryas chronozone in Laguna Facil.  相似文献   
54.
Isotope fractionation of electroplated Fe was measured as a function of applied electrochemical potential. As plating voltage was varied from −0.9 V to 2.0 V, the isotopic signature of the electroplated iron became depleted in heavy Fe, with δ56Fe values (relative to IRMM-14) ranging from −0.18(±0.02) to −2.290(±0.006) ‰, and corresponding δ57Fe values of −0.247(±0.014) and −3.354(±0.019) ‰. This study demonstrates that there is a voltage-dependent isotope fractionation associated with the reduction of iron. We show that Marcus’s theory for the kinetics of electron transfer can be extended to include the isotope effects of electron transfer, and that the extended theory accounts for the voltage dependence of Fe isotope fractionation. The magnitude of the electrochemically-induced fractionation is similar to that of Fe reduction by certain bacteria, suggesting that similar electrochemical processes may be responsible for biogeochemical Fe isotope effects. Charge transfer is a fundamental physicochemical process involving Fe as well as other transition metals with multiple isotopes. Partitioning of isotopes among elements with varying redox states holds promise as a tool in a wide range of the Earth and environmental sciences, biology, and industry.  相似文献   
55.
Gold partitioning in melt-vapor-brine systems   总被引:5,自引:0,他引:5  
We used laser-ablation inductively coupled plasma mass spectrometry to measure the solubility of gold in synthetic sulfur-free vapor and brine fluid inclusions in a vapor + brine + haplogranite + magnetite + gold metal assemblage. Experiments were conducted at 800°C, oxygen fugacity buffered at Ni-NiO (NNO), and pressures ranging from 110 to 145 MPa. The wt% NaCl eq. of vapor increases from 2.3 to 19 and that of brine decreases from 57 to 35 with increasing pressure. The composition of the vapors and brines are dominated by NaCl + KCl + FeCl2 + H2O. Gold concentrations in vapor and brine decrease from 36 to 5 and 50 to 28 μg/g, respectively, and the calculated vapor:brine partition coefficients for gold decrease from 0.72 to 0.17 as pressure decreases from 145 to 110 MPa. These data are consistent with the thermodynamic boundary condition that the concentration of gold in the vapor and brine must approach a common value as the critical pressure is approached along the 800°C isotherm in the NaCl-KCl-FeCl2-HCl-H2O system.We use the equilibrium constant for gold dissolution as AuOH0, extrapolated from lower temperature and overlapping pressure range, to calculate expected concentrations of AuOH0 in our experimental vapors. These calculations suggest that a significant quantity of gold in our experimental vapors is present as a non-hydroxide species. Possible chloridogold(I) species are hypothesized based on the positively correlated gold and chloride concentrations in our experimental vapors. The absolute concentration of gold in our synthetic vapor, brine, and melt and calculated mass partition coefficients for gold between these physicochemically distinct magmatic phases suggests that gold solubility in aqueous fluids is a function of aqueous phase salinity, specifically total chloride concentration, at magmatic conditions. However, though we highlight here the effect of salinity, the combination of our data with data sets from lower temperatures evinces a significant decrease in gold solubility as temperature drops from 800°C to 600°C. This decrease in solubility has implications for gold deposition from ascending magmatic fluids.  相似文献   
56.
57.
Coupled thermo‐hydro‐mechanical‐chemical modelling has attracted attention in past decades due to many contemporary geotechnical engineering applications (e.g., waste disposal, carbon capture and storage). However, molecular‐scale interactions within geomaterials (e.g., swelling and dissolution/precipitation) have a significant influence on the mechanical behaviour, yet are rarely incorporated into existing Thermal‐Hydro‐Mechanical‐Chemical (THMC) frameworks. This paper presents a new coupled hydro‐mechanical‐chemical constitutive model to bridge molecular‐scale interactions with macro‐physical deformation by combining the swelling and dissolution/precipitation through an extension of the new mixture‐coupling theory. Entropy analysis of the geomaterial system provides dissipation energy, and Helmholtz free energy gives the relationship between solids and fluids. Numerical simulation is used to compare with the selected recognized models, which demonstrates that the swelling and dissolution/precipitation processes may have a significant influence on the mechanical deformation of the geomaterials.  相似文献   
58.
59.
The distribution of the short‐lived radionuclide 26Al in the early solar system remains a major topic of investigation in planetary science. Thousands of analyses are now available but grossite‐bearing Ca‐, Al‐rich inclusions (CAIs) are underrepresented in the database. Recently found grossite‐bearing inclusions in CO3 chondrites provide an opportunity to address this matter. We determined the oxygen and magnesium isotopic compositions of individual phases of 10 grossite‐bearing CAIs in the Dominion Range (DOM) 08006 (CO3.0) and DOM 08004 (CO3.1) chondrites. All minerals in DOM 08006 CAIs as well as hibonite, spinel, and pyroxene in DOM 08004 are uniformly 16O‐rich (Δ17O = ?25 to ?20‰) but grossite and melilite in DOM 08004 CAIs are not; Δ17O of grossite and melilite range from ~ ?11 to ~0‰ and from ~ ?23 up to ~0‰, respectively. Even within this small suite, in the two chondrites a bimodal distribution of the inferred initial 26Al/27Al ratios (26Al/27Al)0 is seen, with four having (26Al/27Al)0 ≤1.1 × 10?5 and six having (26Al/27Al)0 ≥3.7 × 10?5. Five of the 26Al‐rich CAIs have (26Al/27Al)0 within error of 4.5 × 10?5; these values can probably be considered indistinguishable from the “canonical” value of 5.2 × 10?5 given the uncertainty in the relative sensitivity factor for grossite measured by secondary ion mass spectrometry. We infer that the 26Al‐poor CAIs probably formed before the radionuclide was fully mixed into the solar nebula. All minerals in the DOM 08006 CAIs, as well as spinel, hibonite, and Al‐diopside in the DOM 08004 CAIs retained their initial oxygen isotopic compositions, indicating homogeneity of oxygen isotopic compositions in the nebular region where the CO grossite‐bearing CAIs originated. Oxygen isotopic heterogeneity in CAIs from DOM 08004 resulted from exchange between the initially 16O‐rich (Δ17O ~?24‰) melilite and grossite and 16O‐poor (Δ17O ~0‰) fluid during hydrothermal alteration on the CO chondrite parent body; hibonite, spinel, and Al‐diopside avoided oxygen isotopic exchange during the alteration. Grossite and melilite that underwent oxygen isotopic exchange avoided redistribution of radiogenic 26Mg and preserved undisturbed internal Al‐Mg isochrons. The Δ17O of the fluid can be inferred from O‐isotopic compositions of aqueously formed fayalite and magnetite that precipitated from the fluid on the CO parent asteroid. This and previous studies suggest that O‐isotope exchange during fluid–rock interaction affected most CAIs in CO ≥3.1 chondrites.  相似文献   
60.
The waning stage(s) of the Tethyan ocean(s) in the Balkans are not well understood. Controversy centres on the origin and life‐span of the Cretaceous Sava Zone, which is allegedly a remnant of the last oceanic domain in the Balkan Peninsula, defining the youngest suture between Eurasia‐ and Adria‐derived plates. In order to investigate to what extent Late‐Cretaceous volcanism within the Sava Zone is consistent with this model we present new age data together with trace‐element and Sr–Nd–Pb isotope data for the Klepa basaltic lavas from the central Balkan Peninsula. Our new geochemical data show marked differences between the Cretaceous Klepa basalts (Sava Zone) and the rocks of other volcanic sequences from the Jurassic ophiolites of the Balkans. The Klepa basalts mostly have Sr–Nd–Pb isotopic and trace‐element signatures that resemble enriched within‐plate basalts substantially different from Jurassic ophiolite basalts with MORB, BAB and IAV affinities. Trace‐element modelling of the Klepa rocks indicates 2%–20% polybaric melting of a relatively homogeneously metasomatised mantle source that ranges in composition from garnet lherzolite to ilmenite+apatite bearing spinel–amphibole lherzolite. Thus, the residual mineralogy is characteristic of a continental rather than oceanic lithospheric mantle source, suggesting an intracontinental within‐plate origin for the Klepa basalts. Two alternative geodynamic models are internally consistent with our new findings: (1) if the Sava Zone represents remnants of the youngest Neotethyan Ocean, magmatism along this zone would be situated within the forearc region and triggered by ridge subduction; (2) if the Sava Zone delimits a diffuse tectonic boundary between Adria and Europe which had already collided in the Late Jurassic, the Klepa basalts together with a number of other magmatic centres represent volcanism related to transtensional tectonics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号