首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   2篇
地球物理   6篇
地质学   39篇
海洋学   7篇
天文学   10篇
自然地理   15篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   6篇
  2008年   1篇
  2007年   9篇
  2006年   4篇
  2005年   5篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  2000年   5篇
  1999年   1篇
  1998年   6篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1992年   3篇
  1991年   1篇
  1989年   2篇
  1987年   1篇
  1984年   1篇
  1980年   1篇
  1979年   2篇
排序方式: 共有77条查询结果,搜索用时 125 毫秒
31.
Lithospheric folding is an important mode of basin formation in compressional intraplate settings. Basins formed by lithospheric folding are characterized by distinct features in subsidence history. A comparison with extensional basins, foreland basins, intracratonic basins and pull‐apart basins provides criteria for the discrimination between these modes of basin formation. These findings are important in deciphering the feedbacks between tectonics and surface processes. In addition, inferences on accommodation space and thermal regime have important consequences for hydrocarbon maturity. Lithospheric folding is coupled to compressional reactivation of basins and faults, and therefore, strongly affects reservoir characteristics of sedimentary basins.  相似文献   
32.
We present the results of finite element modelling of the recent stress field in the Pannonian basin and surrounding Alpine orogenic belt. Our results show that the recent, predominantly compressive, stress regime in the Alpine–Pannonian–Carpathian–Dinaric system is governed by distinct tectonic factors. Of great importance is the deformation of crustal blocks with different geometries and rigidities in an overall convergent setting associated with the Africa–Europe collision. The most important stress source appears to be the counterclockwise rotation of the Adriatic microplate at the southwest boundary of the Pannonian basin. This plate tectonic unit has been interpreted as moving independently of both the European plate and the African plate. Additional boundary conditions—active shortening and compression in the Vrancea zone and the Bohemian Massif, and the effect of the immobile Moesian Platform—also significantly influence the modelling results. The incorporation of additional stress sources such as crustal thickness variation and the presence of two main fault zones separating the primary tectonic units in the study area have only locally important effects but improve the fit between the calculated results and the observed stress pattern.  相似文献   
33.
The signature of the Mediterranean Messinian Salinity Crisis (MSC) in the Paratethys has received wide attention because of the inferred changes in connectivity and base level. In this article, we present sequence stratigraphic interpretations on a seismic transect across the western part of the semi-isolated Late Miocene–Pliocene Dacic Basin (Eastern Paratethys, Romania), chronologically constrained by biostratigraphic field observations and well data. They reveal significant sea level changes during the middle Pontian that are coeval with the MSC. These changes were most likely transmitted to the western Dacic Basin from the downstream Black Sea and controlled by the sill height of the interconnecting gateway. During the middle Pontian lowstand of the western Dacian Basin, sedimentation continued in a remnant ∼300 m deep lake with a positive water balance. Our observations show that the evolution of semi-isolated sedimentary basins is strongly dependent on the communication with other depositional realms through its control on base level and sediment supply.  相似文献   
34.
35.
A two-dimensional numerical modelling that simulate the kinematic and thermal response of the lithosphere to thinning was used for the quantitative reconstruction of the late Neogene to Recent times tectonic and stratigraphic evolution of the North Sicily continental margin (southern Tyrrhenian Sea). The numerical study of the evolution of the North Sicily margin builds on the crustal image and kinematic interpretation of the margin obtained by Pepe et al. [Tectonics 19 (2000) 241] on the basis of seismic data and gravity modelling. Tectonic modeling indicate that different segments of the margin were undergoing different vertical movements, which are mainly expression of the rifting and thinning of the lithosphere occurred during tectonic evolution of the southern Tyrrhenian Sea. A prediction of the pre-rift basement topography and the Moho along the margin converges to a value of 6.5 km for the depth of necking and a temperature-dependent EET (500° isotherm). The model fails to reproduce the morphology of the Solunto High confirming its non-extensional origin. A polyphase evolution is required to reproduce the observed syn- and post-rift stratigraphy. During the first rifting stage (between 9 and 5 Ma), crustal thinning factors reach maximum values of 1.27 in the Cefalù basin. A similar value is predicted for the subcrustal thinning around 60 km NNE of the profile margin. Crustal thinning factors increase during the second rifting stage (from 4 to 2 Ma) and reach values of 2 and up to 3.5 in the Cefalù basin and in the continent–oceanic transition zone, respectively. Similarly, subcrustal lithospheric thinning factors reach values up to 2.5 in the distal sector of the margin. An uplift of more than 100 m is predicted for the North Sicily shelf and surrounding onshore areas during the post-rift stage. The evolution of thermal structure with time is very sensitive to the partial thinning factors describing the evolution of the thinning itself during time. The lithosphere preserved part of its strength during extension. The effective elastic thickness (EET) along the margin through time is 24 km at the onset of rifting and reaches values less to 8 km during the second rifting stage in the northeastern end of the margin.  相似文献   
36.
The northern Upper Rhine Graben, situated in the central part of the European Cenozoic rift system, is currently characterized by low intra-plate seismicity. Historical earthquakes have not been large enough to produce surface rupturing. Moreover, the records of Quaternary surface processes and human modifications are presumably better preserved than the record of the relatively slow tectonic deformation.In order to gain information on the neotectonic activity and paleoseismicity in this setting, the geological and geomorphological records of fault movements along a segment of the Western Border Fault (WBF) were studied using an integration of techniques in paleoseismology, structural analysis and shallow geophysics. The WBF segment investigated follows a 20 km long linear scarp of unclear origin. A series of geophysical measurements were performed and the results suggested that near-surface deformation structures are present at the segments' southern end. Several trenches opened at this location revealed fault structures with consistent extensional style and a maximum vertical displacement of 0.5 m. In one trench, the deformation structures were dated between 19 and 8 ka. Assuming the deformation has been caused by an earthquake, a Mw 6.5 earthquake would be implied. Aseismic deformation would point to a fault creep rate ≥ 0.04 mm/yr.A reconstruction of the sequence of events at the trench site, from Middle Pleistocene to Present, demonstrates that the morphology at the base of the scarp is the result of interplay between tectonic activity and fluvial and erosional processes. At the regional scale, a mixed origin for the WBF scarp is proposed, combining the effects of fluvial dynamics, erosion, regional uplift and localized tectonic activity on the WBF.  相似文献   
37.
ABSTRACT The tectonic evolution of a collisional hinterland sourcing the Ha?eg Basin, a Late Cretaceous syn‐orogenic sedimentary basin in the South Carpathians (Romania), is revealed through fission track thermochronology of detrital apatite and zircon grains. This basin formed on the upper plate (Getic unit) in response to Late Cretaceous collision with the lower plate (Danubian unit), an allochtonous continental block of the Moesian Platform, upon closure of a narrow oceanic basin (Severin Basin). The fission track results suggest that Turonian to lower Maastrichtian sediments of the Ha?eg Basin have been dominantly derived from pre‐Late Cretaceous sources. The age components they contain relate to pre‐Cretaceous tectonothermal events such as the Variscan orogenic cycle, Jurassic rifting and Severin Basin formation, and to Early Cretaceous compressional tectonics. These results are compatible with the tectonic evolution of the upper plate that is identified as the primary source. From the onset of sedimentation (late Albian) until the early Campanian the Ha?eg Basin resembles a piggy‐back basin formed on the upper plate concomitant with underthrusting and internal stacking of the lower plate. In contrast, important tectonic subsidence during the late Campanian and early Maastrichtian reflects a shift to extensional tectonics causing the unroofing of the collision zone and the exhumation of lower plate rocks back to the surface. Our fission track data place important constraints on the timing of lower plate erosion that must have commenced during the late Maastrichtian, as documented by the completely reset Late Cretaceous age component within upper Maastrichtian sediments (Sînpetru Formation). Late Maastrichtian uplift of the basin and the formation of positive relief at the site of the collision zone is an expression of continuous convergence. The mismatch between the amount of denudation and the amount of sediments trapped in the Ha?eg Basin underlines the importance of concomitant extensional unroofing.  相似文献   
38.
A finite difference model, allowing for episodic movements along different faults, is used to examine the effect of tectonics on the stratigraphic signature in the Oseberg–Brage area in the northern Viking Graben. Constraints are provided by local exploration and production well data and 3-D seismic coverage, and a regional depth-converted seismic line.
In the modelling, we focus on the influence of varying rates of fault movement on stratigraphic signatures such as upflank unconformities and changes in layer thickness. We couple the basinwide features of the northern Viking Graben with the fault-block-scale features of the Oseberg–Brage area by using parameter constraints derived by large-scale modelling as input for the local-scale model. In addition, subsidence patterns resulting from the basinwide model were used as background subsidence for the fault block model of the Oseberg–Brage area.
The model results indicate that the alternating activation of different faults with varying extension rates can cause stratigraphic features such as unconformities, condensation and onlap/offlap patterns. Onlap occurs during periods of low extension rates. An increase in extension rate along a fault causes footwall uplift, resulting in condensation or upflank erosion yielding unconformities. This influence can also affect sub-basins further away from the fault. Downdip layer thickening reflects the local tilting of fault blocks.
The coupling of the local and regional scales turns out to be essential in explaining the stratigraphy of the Oseberg–Brage area: basinward and, notably, updip layer thickening as observed on some of the fault blocks can only be explained by activity of the boundary fault on the opposing, western margin of the northern Viking Graben.
  相似文献   
39.
Postcollisional tectonic movements in orogens and their adjacent foreland basins related to intraplate stresses and the presence of a remnant slab are likely to induce significant deformations overprinting the existing patterns of nappe emplacement. In the Carpathian Bend Zone, Romania, vertical motions associated with very limited postorogenic intraplate shortening are of similar magnitude as those generally caused by large orogenic deformations. In the Latest Miocene–Pliocene, up to 6 km of postcollisional sediments of remarkably parallel stratification were deposited in a basin extending over a large part of the present‐day orogen. The Early Quaternary featured a dramatical change as the orogen was uplifted while subsidence continued in the basin, tilting the basin flank adjacent to the orogen to a vertical position. The remnant slab presently below the Bend zone in Vrancea is the prime mechanism to have driven the Pliocene subsidence. The Quaternary changes and the eastwards migration of the pattern of vertical motions can be explained by large‐scale folding, in response to the overall compressive regime that is recorded in the whole Pannonian‐Carpathian area.  相似文献   
40.
Modelling the extension of heterogeneous hot lithosphere   总被引:2,自引:0,他引:2  
The consequences of weak heterogeneities in the extension of soft and hot lithosphere without significant previous crustal thickening has been analysed in a series of centrifuge models. The experiments examined the effects of i) the location of heterogeneities in the ductile crust and/or in the lithospheric mantle, and ii) their orientation, perpendicular or oblique to the direction of bulk extension. The observed deformation patterns are all relevant to the so-called “wide rifting” mode of extension. Weak zones located in the ductile crust exert a more pronounced influence on localisation of deformation in the brittle layer than those located in the lithospheric mantle: the former localise faulting in the brittle crust whereas the latter tend to distribute faulting over a wider area. This latter behaviour depends in turn upon the decoupling provided by the ductile crust. Localised thinning in the brittle crust is accompanied by ductile doming of both crust and mantle. Domains of maximum thinning in the brittle crust and ductile crust and mantle are in opposition. Lateral differences in brittle crust thinning are accommodated by lateral flow in the ductile crust and mantle. This contrasts with “cold and strong” lithospheres whose high strength sub-Moho mantle triggers a necking instability at the lithosphere-scale. This also differs from the extension of thickened hot and soft lithospheres whose ductile crust is thick enough to give birth to metamorphic core complexes. Thus, for the given lithospheric rheology, the models have relevance to backarc type extensional systems, such as the Aegean and the Tyrrhenian domains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号