首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   474篇
  免费   14篇
  国内免费   4篇
测绘学   3篇
大气科学   20篇
地球物理   119篇
地质学   117篇
海洋学   96篇
天文学   114篇
综合类   2篇
自然地理   21篇
  2023年   2篇
  2022年   2篇
  2021年   5篇
  2020年   7篇
  2019年   14篇
  2018年   5篇
  2017年   16篇
  2016年   9篇
  2015年   9篇
  2014年   26篇
  2013年   14篇
  2012年   19篇
  2011年   20篇
  2010年   25篇
  2009年   24篇
  2008年   26篇
  2007年   21篇
  2006年   27篇
  2005年   16篇
  2004年   15篇
  2003年   11篇
  2002年   16篇
  2001年   12篇
  2000年   10篇
  1999年   11篇
  1998年   10篇
  1997年   8篇
  1996年   5篇
  1995年   5篇
  1994年   6篇
  1993年   9篇
  1992年   6篇
  1991年   2篇
  1990年   6篇
  1989年   2篇
  1988年   4篇
  1987年   9篇
  1986年   5篇
  1985年   3篇
  1984年   5篇
  1983年   6篇
  1982年   4篇
  1981年   5篇
  1977年   6篇
  1975年   2篇
  1974年   4篇
  1973年   5篇
  1972年   3篇
  1971年   2篇
  1970年   2篇
排序方式: 共有492条查询结果,搜索用时 15 毫秒
101.
Subduction of lithosphere, involving surficial materials, into the deep mantle is fundamental to the chemical evolution of the Earth. However, the chemical evolution of the lithosphere during subduction to depth remains equivocal. In order to identify materials subjected to geological processes near the surface and at depths in subduction zones, we examined B and Li isotopes behavior in a unique diamondiferous, K-rich tourmaline (K-tourmaline) from the Kokchetav ultrahigh-pressure metamorphic belt. The K-tourmaline, which includes microdiamonds in its core, is enriched in 11B relative to 10B (δ11B = −1.2 to +7.7) and 7Li relative to 6Li (δ7Li = −1.1 to +3.1). It is suggested that the K-tourmaline crystallized at high-pressure in the diamond stability field from a silicate melt generated at high-pressure and temperature conditions of the Kokchetav peak metamorphism. The heavy isotope signature of this K-tourmaline differs from that of ordinary Na-tourmalines in crustal rocks, enriched in the light B isotope (δ11B = −16.6 to −2.3), which experienced isotope fractionation through metamorphic dehydration reactions. A possible source of the heavy B-isotope signature is serpentine in the subducted lithospheric mantle. Serpentinization of the lithospheric mantle, with enrichment of heavy B-isotope, can be produced by normal faulting at trench-outer rise or trench slope regions, followed by penetration of seawater into the lithospheric mantle. Serpentine breakdown in the lithospheric mantle subducted in subarc regions likely provided fluids with the heavy B-isotope signature, which was acquired during the serpentinization prior to subduction. The fluids could ascend and cause partial melting of the overlying crustal layer, and the resultant silicate melt could inherit the heavy B-isotope signature. The subducting lithospheric mantle is a key repository for modeling the flux of fluids and associated elements acquired at a near the surface into the deep mantle.  相似文献   
102.
Methyl halides such as methyl chloride (CH3Cl) are known to be important carriers of halogen from the ocean to the atmosphere, and the halogens they release into the stratosphere by photolysis catalyze ozone depletion. Marine phytoplankton have been reported as a source of CH3Cl, but the effects of environmental temperature on the CH3Cl production by phytoplankton have not been investigated. In this study, we investigated the effects of temperature on the production of CH3Cl in the culture of a marine diatom, Phaeodactylum tricornutum CCMP 630, incubated at 10, 15, 20, 25, and 30 °C. CH3Cl concentrations in cultured samples were determined using purge and trap gas chromatograph–mass spectrometry. Phytoplankton growth was monitored by measuring the chlorophyll a concentrations. CH3Cl production was observed for several weeks at four different temperatures ranging from 10 to 25 °C. The CH3Cl production from P. tricornutum was increased with increasing temperature from 10 to 25 °C, and the maximum production rate for CH3Cl was 0.21~0.26 μmol (g chlorophyll a)?1 d?1 at 25 °C, which was several times higher than that at 10 °C (~0.03 μmol (g chlorophyll a)?1 d?1). The Arrhenius equation was successfully used to characterize the effects of temperature on the production rates of CH3Cl in the culture of P. tricornutum. Our results suggest that water temperature directly affects CH3Cl production derived from P. tricornutum and that water temperature would be a significant factor for estimating the emissions of CH3Cl from marine environments.  相似文献   
103.
The effects of wetlands on hydrology, water quality, and wildlife habitat are internationally recognized. Protecting the remaining wetlands is one of the most important environmental issues in many countries. However wetlands in Japan have been gradually shrinking due to agricultural development and urbanization, which generally lowers the groundwater level and introduces suspended sediment and sediment-associated nutrients into wetlands. We examined the influences of channelization on discharge of suspended sediment and wetland vegetation in Hokkaido, northern Japan. The impact of river channelization was confirmed not only by the sediment budgets but also by river aggradation or degradation after the channelization and by the resultant vegetational changes. The budgets of suspended sediment demonstrated that wash load was the predominant component accounting for 95% of the total suspended load delivered into the wetland. This suspended sediment was primarily transported into the wetland by flooding associated with heavy rainfall. Twenty-three percent of the wash load and 63% of the suspended bed material load were deposited in the channelized reach, which produced aggradation of about 2 m at the end of the reach. A shorting of the length of the channel, due to channelization of a meandering river, steepened the slope and enhanced the stream power to transport sediment. This steepening shifted the depositional zones of fine sediment 5 km downstream and aggraded the riverbed. Development of the watershed may increase not only the water discharge but also the amount of suspended sediments. The aggradation reduced the carrying capacity of the channel and caused sediment ladened water to flood over the wetlands. The fine sediment accumulated on the wetlands gradually altered the edaphic conditions and wetland vegetation. A low percentage (10 to 15%) of organic contents of wetlands' soil is more evidence indicating that the present condition is far different from normal. Original vegetation such as sedges and Alnus japonica were disappearing from the adjacent areas of the river channel and were being replaced by willow trees (Salix spp.).  相似文献   
104.
We found that the suppression of signals for 88Sr, 140Ce and 238U in rock solution caused by rock matrix in ICP-MS (matrix effects) was reduced at high power operation (1.7 kW) of the ICP. To make the signal suppression by the matrix negligible, minimum dilution factors (DF) of the rock solution for Sr, Ce and U were 600, 400 and 113 at 1.1, 1.4 and 1.7 kW, respectively. Based on these findings, a rapid and precise determination method for Rb, Sr, Y, Cs, Ba, REE, Pb, Th and U using FI (flow injection)-ICP-MS was developed. The amount of the sample solution required for FI-ICP-MS was 0.2 ml, so that 1.8 mg sample was sufficient for analysis with a detection limit of several ng g-1. Using this method, we determined the trace element concentrations in the USGS rock reference materials, DTS-1, PCC-1, BCR-1 and AGV-1, and the GSJ rock reference materials, JP-1, JB-1, -2, -3, JA-1, -2 and -3. The reproducibilities (RSD %) in replicate analyses (n=5) of BCR-1, AGV-1, JB-1, -2, -3, JA-1, -2, and -3 were < 6 %, and typically 2.5%. The difference between the average concentrations of this study for BCR-1 and those of the reference values were < 2%. Therefore, it was concluded that the method can give reliable data for trace elements in silicate rocks.  相似文献   
105.
We investigated seasonal changes in carbon demand and flux by mesozooplankton communities at subtropical (S1) and subarctic sites (K2) in the western North Pacific Ocean to compare the impact of mesozooplankton communities on the carbon budget in surface and mesopelagic layers. Fecal pellet fluxes were one order higher at K2 than at S1, and seemed to be enhanced by copepod and euphausiid egestion under high chlorophyll a concentrations. The decrease in pellet volume and the lack of any substantial change in shape composition during sink suggest a decline in fecal pellet flux due to coprorhexy and coprophagy. While respiratory and excretory carbon by diel migrants at depth (i.e., active carbon flux) was similar between the two sites, the actively transported carbon exceeded sinking fecal pellets at S1. Mesozooplankton carbon demand in surface and mesopelagic layers was higher at K2 than S1, and an excess of demand to primary production and sinking POC flux was found during some seasons at K2. We propose that this demand was met by supplementary carbon sources such as feeding on protozoans and fecal pellets at the surface and carnivory of migrants at mesopelagic depths.  相似文献   
106.
Seasonal changes in mesozooplankton biomass and their community structures were observed at time-series stations K2 (subarctic) and S1 (subtropical) in the western North Pacific Ocean. At K2, the maximum biomass was observed during the spring when primary productivity was still low. The annual mean biomasses in the euphotic and 200- to 1000-m layers were 1.39 (day) and 2.49 (night) g C m?2 and 4.00 (day) and 3.63 (night) g C m?2, respectively. Mesozooplankton vertical distribution was bimodal and mesopelagic peak was observed in a 200- to 300-m layer; it mainly comprised dormant copepods. Copepods predominated in most sampling layers, but euphausiids were dominant at the surface during the night. At S1, the maximum biomass was observed during the spring and the peak timing of biomass followed those of chlorophyll a and primary productivity. The annual mean biomasses in the euphotic and 200- to 1000-m layers were 0.10 (day) and 0.21 (night) g C m?2 and 0.47 (day) and 0.26 (night) g C m?2, respectively. Copepods were dominant in most sampling layers, but their mean proportion was lower than that in K2. Mesozooplankton community characteristics at both sites were compared with those at other time-series stations in the North Pacific and with each other. The annual mean primary productivities and sinking POC fluxes were equivalent at both sites; however, mesozooplankton biomasses were higher at K2 than at S1. The difference of biomasses was probably caused by differences of individual carbon losses, population turnover rates, and trophic structures of communities between the two sites.  相似文献   
107.
Chattonella antiqua (Raphidophyceae), which causes heavy red tides in the Seto Inland Sea, Japan, was placed in axenic clonal culture by micropipette washing. The effects of temperature, salinity, light intensity and pH on growth were monitored. Maximum growth occurred at 25°C, at salinities between 25 and 41‰, under light intensities above 0.04 ly min?1. The pH effect was not significant in the pH range from 7.6 to 8.3. Comparisons of our results with those from field observations suggest that the development of theC. antiqua red tide is strongly temperature dependent.  相似文献   
108.
Strontium contents of 232 sea water samples collected at various stations in the North Pacific and adjacent seas of Japan were measured by the atomic absorption spectrophotometry and strontium-chlorinity ratios were determined. Mean Sr concentration is 8.08 mg/kg and mean Sr/Cl ratio is 0.425 mg/kg/Contrary to some recent reports, regional and vertical variations of Sr/Cl ratios were statistically insignificant, and presence of particulate strontium was not confirmed.  相似文献   
109.
A numerical study using a 3-D nonhydrostatic model has been applied to baroclinic processes generated by the K 1 tidal flow in and around the Kuril Straits. The result shows that large-amplitude unsteady lee waves are generated and cause intense diapycnal mixing all along the Kuril Island Chain to levels of a maximum diapycnal diffusivity exceeding 103 cm2s−1. Significant water transformation by the vigorous mixing in shallow regions produces the distinct density and potential vorticity (PV) fronts along the Island Chain. The pinched-off eddies that arise and move away from the fronts have the ability to transport a large amount of mixed water (∼14 Sv) to the offshore regions, roughly half being directed to the North Pacific. These features are consistent with recent satellite imagery and in-situ observations, suggesting that diapycnal mixing within the vicinity of the Kuril Islands has a greater impact than was previously supposed on the Okhotsk Sea and the North Pacific. To examine this influence of tidal processes at the Kurils on circulations in the neighboring two basins, another numerical experiment was conducted using an ocean general circulation model with inclusion of tidal mixing along the islands, which gives a better representation of the Okhotsk Sea Mode Water than in the case without the tidal mixing. This is mainly attributed to the added effect of a significant upward salt flux into the surface layer due to tidal mixing in the Kuril Straits, which is subsequently transported to the interior region of the Okhotsk Sea. With a saline flux into the surface layer, cooling in winter in the northern part of the Okhotsk Sea can produce heavier water and thus enhance subduction, which is capable of reproducing a realistic Okhotsk Sea Mode Water. The associated low PV flux from the Kuril Straits to the open North Pacific excites the 2nd baroclinic-mode Kelvin and Rossby waves in addition to the 1st mode. Interestingly, the meridional overturning in the North Pacific is strengthened as a result of the dynamical adjustment caused by these waves, leading to a more realistic reproduction of the North Pacific Intermediate Water (NPIW) than in the case without tidal mixing. Accordingly, the joint effect of tidally-induced transport and transformation dominating in the Kuril Straits and subsequent eddy-transport is considered to play an important role in the ventilation of both the Okhotsk Sea and the North Pacific Ocean. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
110.
This article concerns an interrelation between the sea levels and the western boundary flow near a tectonic boundary in a local zone in the Northwestern Pacific. In this zone, sea level variations at stations located on the coast facing the Pacific are studied to find the interrelation between variations of the Kurosio flow as an index of the distance of the flow axis off a specific coast. The result is discussed after data processing of the monthly means of the sea levels, and a notice is taken of variations caused by active crustal upheavals during a seismic event, a local earthquake.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号