首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   4篇
  国内免费   19篇
大气科学   4篇
地球物理   13篇
地质学   67篇
天文学   2篇
自然地理   1篇
  2021年   1篇
  2019年   2篇
  2018年   7篇
  2017年   3篇
  2016年   1篇
  2015年   4篇
  2014年   1篇
  2013年   2篇
  2011年   2篇
  2010年   2篇
  2009年   12篇
  2008年   8篇
  2007年   11篇
  2006年   1篇
  2005年   5篇
  2004年   3篇
  2003年   1篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1997年   3篇
  1996年   1篇
  1994年   1篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1978年   1篇
排序方式: 共有87条查询结果,搜索用时 15 毫秒
21.
A barrier system based on the hydraulic trap design concept for a landfill was proposed. To study the field scenario in which a clay liner is underlain by a granular layer functioning as a secondary leachate drain layer, a laboratory advection–diffusion test was performed to investigate factors controlling the transport of contaminants in a two-layer soil system. The soils used for this study were Ariake clay and, the underlying layer, Shirasu soil from the Kyushu region of Japan. Potassium (K+) was selected as the target chemical species with an initial concentration of 905 mg L−1. The effective diffusion coefficients (D e) of K+ for Ariake clay and Shirasu soil were back-calculated using an available computer program, Pollute V 6.3. Values of D e derived from this experiment are consistent with previously published ones. The Ariake clay has lower D e than the Shirasu soil. The hypothesis that mechanical dispersion can be considered negligible is reasonable based on both the observation that the predicted values well fit the experimental data and the analyses of two dimensionless parameters. Parametric analyses show that transport of K+ through soils is controlled by advection–diffusion rather than diffusion only, whereas at low Darcy velocity (i.e., ≤10−9 m s−1), transport of K+ will be controlled by diffusion. Applications of the test results and parametric analysis results in practical situations were reviewed.  相似文献   
22.
23.
Pacific-type orogeny revisited: Miyashiro-type orogeny proposed   总被引:30,自引:0,他引:30  
Shigenori  Maruyama 《Island Arc》1997,6(1):91-120
Abstract The concept of Pacific-type orogeny is revised, based on an assessment of geologic data collected from the Japanese Islands during the past 25 years. The formation of a passive continental margin after the birth of the Pacific Ocean at 600 Ma was followed by the initiation of oceanic plate subduction at 450 Ma. Since then, four episodes of Pacific-type orogeny have occurred to create an orogenic belt 400 km wide that gradually grew both oceanward and downward. The orogenic belt consists mainly of an accretionary complex tectonically interlayered with thin (<2 km thick), subhorizontal, high-P/T regional metamorphic belts. Both the accretionary complex and the high-P/T rocks were intruded by granitoids ~100 million years after the formation of the accretionary complex. The intrusion of calc-alkaline (CA) plutons was synchronous with the exhumation of high-P/T schist belts. Ages from microfossils and K-Ar analysis suggest that the orogenic climax happened at a time of mid-oceanic ridge subduction. The orogenic climax was characterized by the formation of major subhorizontal orogenic structures, the exhumation of high-P/T schist belts by wedge extrusion and subsequent domed uplift, and the intrusion-extrusion of CA magma dominantly produced by slab melting. The orogenic climax ended soon after ridge subduction, and thereafter a new Pacific-type orogeny began. A single Pacific-type orogenic cycle may correspond to the interaction of the Asian continental margin with one major Pacific oceanic plate. Ophiolites in Japan occur as accreted material and are not of island-arc but of plume origin. They presumably formed after the birth of the southern Pacific superplume at 600 Ma, and did not modify the cordilleran-type orogeny in a major way. Microplates, fore-arc slivers, intra-oceanic arc collisions and the opening of back-arc basins clearly contributed to cordilleran orogenesis. However, they were of secondary importance and served only to modify pre-existing major orogenic components. The most important cause of cordilleran-type orogeny is the subduction of a mid-oceanic ridge, by which the volume of continental crust increases through the transfer of granitic melt from the subducting oceanic crust to an orogenic welt. Accretionary complexes are composed mainly of recycled granitic sediments with minor amounts of oceanic material, which indicate that the accretion of oceanic material, including huge oceanic plateaus, was not significant for orogenic growth. Instead, the formation and intrusion of granitoids are the keys to continental growth, which is the most important process in Pacific-type orogeny. Collision-type orogeny does not increase the volume of continental crust. The name ‘Miyashiro-type orogeny’ is proposed for this revised concept of Pacific-type or cordilleran-type orogeny, in order to commemorate Professor A. Miyashiro's many contributions to a better understanding of orogenesis.  相似文献   
24.
The Cazadero blueschist allochthon lies within the Central MelangeBelt of the Franciscan assemblage in the northern Coast Rangeof California. Mineral compositions and assemblages of morethan 200 blueschists from Ward Creek were investigated. Theresults delineate lawsonite-, pumpellyite-, and epidote-zones.The lawsonite and pumpellyite zones are equivalent to the TypeII metabasites of Coleman & Lee (1963) and are characterizedby well-preserved igneous textures, relict augite, and pillowstructures, whereas epidote zone rocks are equivalent to theType III strongly deformed and schistose metabasites. Chlorite,phengite, aragonite, sphene, and minor quartz and albite areubiquitous. The lawsonite zone metabasites contain lawsonite ( < 3 wt.per cent Fe2O3), riebeckite-crossite, chlorite, and Ca-Na-pyroxene;some rocks have two distinct clinopyroxenes separated by a compositionalgap. The clinopyroxene of the lowest grade metabasites containsvery low Xjd. In pumpellyite zone metabasites, the most commonassemblages contain Pm + Cpx + Gl + Chl and some samples withhigher Al2O3 and/or Fe2O3 have Pm + Lw + Cpx + Chl, Actinolitejoins the above assemblage in the upper pumpellyite zone wherethe actinolite-glaucophane compositional gap is well defined.The epidote zone metabasites are characterized by the assemblagesEp + Cpx + two amphiboles + Chl, Lw + Pm + Act + Chl, and Ep+ Pm + two amphiboles + Chl depending on the Fe2O3 content ofthe rock. In the upper epidote zone, winchite appears, Fe-freelawsonite is stable, pumpellyite disappears and omphacite containsvery low Ac component. Therefore, the common assemblages areEp + winchite + Lw, and Lw + Omp + winchite. With further increasein metamorphic grade, epidote becomes Al-rich and lawsoniteis no longer stable. Hence Ep + winchite + omphacite ? garnetis characteristic. Mineral assemblages and paragenetic sequences delineate threediscontinuous reactions: (1) pumpellyite-in; (2) actinolite-in;and (3) epidote-in reactions. Using the temperatures estimatedby Taylor & Coleman (1968) and phase equilibria for Ca-Na-pyroxenes,the PT positions of these reactions and the metamorphicgradient are located. All three metabasite zones occur withinthe aragonite stability field and are bounded by the maximumpressure curve of Ab = Jd + Qz and the maximum stabilities ofpumpellyite and lawsonite. The lawsonite zone appears to bestable at T below 200?C with a pressure range of 4–6?5kb; the pumpellyite zone between 200 and 290?C and the epidotezone above 290?C with pressure variation between 6?5 and 9 kb.The metamorphic field gradient appears to have a convex naturetowards higher pressure. A speculative model of underplatingseamounts is used to explain such feature.  相似文献   
25.
26.
The Gorny Altai region in southern Siberia is one of the key areas in reconstructing the tectonic evolution of the western segment of the Central Asian Orogenic Belt (CAOB). This region features various orogenic elements of Late Neoproterozoic–Early Paleozoic age, such as an accretionary complex (AC), high-P/T metamorphic (HP) rocks, and ophiolite (OP), all formed by ancient subduction–accretion processes. This study investigated the detailed geology of the Upper Neoproterozoic to Lower Paleozoic rocks in a traverse between Gorno-Altaisk city and Lake Teletskoy in the northern part of the region, and in the Kurai to Chagan-Uzun area in the southern part. The tectonic units of the studied areas consist of (1) the Ediacaran (=Vendian)–Early Cambrian AC, (2) ca. 630 Ma HP complex, (3) the Ediacaran–Early Cambrian OP complex, (4) the Cryogenian–Cambrian island arc complex, and (5) the Middle Paleozoic fore-arc sedimentary rocks. The AC consists mostly of paleo-atoll limestone and underlying oceanic island basalt with minor amount of chert and serpentinite. The basaltic lavas show petrochemistry similar to modern oceanic plateau basalt. The 630 Ma HP complex records a maximum peak metamorphism at 660 °C and 2.0 GPa that corresponds to 60 km-deep burial in a subduction zone, and exhumation at ca. 570 Ma. The Cryogenian island arc complex includes boninitic rocks that suggest an incipient stage of arc development. The Upper Neoproterozoic–Lower Paleozoic complexes in the Gorno-Altaisk city to Lake Teletskoy and the Kurai to Chagan-Uzun areas are totally involved in a subhorizontal piled-nappe structure, and overprinted by Late Paleozoic strike-slip faulting. The HP complex occurs as a nappe tectonically sandwiched between the non- to weakly metamorphosed AC and the OP complex. These lithologic assemblages and geologic structure newly documented in the Gorny Altai region are essentially similar to those of the circum-Pacific (Miyashiro-type) orogenic belts, such as the Japan Islands in East Asia and the Cordillera in western North America. The Cryogenian boninite-bearing arc volcanism indicates that the initial stage of arc development occurred in a transient setting from a transform zone to an incipient subduction zone. The less abundant of terrigenous clastics from mature continental crust and thick deep-sea chert in the Ediacaran–Early Cambrian AC may suggest that the southern Gorny Altai region evolved in an intra-oceanic arc-trench setting like the modern Mariana arc, rather than along the continental arc of a major continental margin. Based on geological, petrochemical, and geochronological data, we synthesize the Late Neoproterozoic to Early Paleozoic tectonic history of the Gorny Altai region in the western CAOB.  相似文献   
27.
The evolution of the late Archean Belingwe greenstone belt,Zimbabwe, is discussed in relation to the geochemistry of theultramafic to mafic volcanic rocks. Four volcanic types (komatiite,komatiitic basalt, D-basalt and E-basalt) are distinguishedin the 2·7 Ga Ngezi volcanic sequence using a combinationof petrography and geochemistry. The komatiites and D-basaltsare rocks in which isotopic systems and trace elements are depleted.Chemical variations in komatiites and D-basalts can be explainedby fractional crystallization from the parental komatiite. Incontrast, komatiitic basalts and E-basalts are siliceous anddisplay enriched isotopic and trace element compositions. Theirchemical trends are best explained by assimilation with fractionalcrystallization (AFC) from the primary komatiite. AFC calculationsindicate that the komatiitic basalts and E-basalts are derivedfrom komatiites contaminated with 20% and 30% crustal material,respectively. The volcanic stratigraphy of the Ngezi sequence,which is based on field relationships and the trace elementcompositions of relict clinopyroxenes, shows that the leastcontaminated komatiite lies between highly contaminated komatiiticbasalt flows, and has limited exposure near the base of thesuccession. Above these flows, D- and E-basalts alternate. Thekomatiite appears to have erupted on the surface only in theearly stages, when plume activity was high. As activity decreasedwith time, komatiite magmas may have stagnated to form magmachambers within the continental crust. Subsequent komatiiticmagmas underwent fractional crystallization and were contaminatedwith crust to form D-basalts or E-basalts. KEY WORDS: komatiite; crustal assimilation; Belingwe greenstone belt; continental flood basalt; plume magmatism  相似文献   
28.
Abstract Dolomite marble from the Kumdy–Kol area of the Kokchetav Massif contains abundant microdiamond, mainly in garnet and a few in diopside. The mineral assemblage at peak metamorphic condition consists of dolomite + diopside + garnet (+ aragonite) ± diamond. Inclusions of very low MgCO3 calcite and almost pure calcite occur in diopside and are interpreted as aragonite and/or aragonite + dolomite. Single-phase Mg–calcite in diopside with a very high MgCO3 component (up to 21.7 mol%) was also found in diamond-free dolomitic marble, and is interpreted as a retrograde product from aragonite + dolomite to Mg–calcite. The dolomite stability constrains the maximum pressure (P) at < 7 GPa using previous experimental data, whereas the occurrence of diamond yields the minimum peak pressure–temperature (P–T) condition at 4.2 GPa and 980 °C at X co 2 = 0.1. The highest MgCO3 in Mg–calcite constrains the minimum P–T condition higher than 2.5 GPa and 800 °C for the exhumation stage. As these marbles were subjected to nearly identical P–T metamorphic conditions, the appearance of diamond in some carbonate rocks was explained by high X co 2. A low X co 2 condition refers to high oxidized conditions and diamond (and/or graphite) becomes unstable. Difference in X co 2 for marble from the same area suggests local heterogeneity of fluid compositions during ultrahigh-pressure metamorphism.  相似文献   
29.
The Ediacaran period was one of the most important times for the evolution of life. However, the scarcity of well-preserved outcrops of Ediacaran rocks still leaves ambiguity in decoding ambient surface environmental changes and biological evolution.The Ediacaran strata in South China are almost continuously exposed, comprise mainly carbonate rocks with subordinate black shales and sandstones, and they contain many fossils, suitable for study of environmental and biological changes in the Ediacaran. We conducted drilling through the Doushantuo Fm at four sites in the Three Gorges area to obtain continuous, fresh samples without surface alteration and oxidation. We analyzed 87Sr/86Sr and 88Sr/86Sr ratios of the fresh carbonate rocks, selected on the basis of microscopic observations and the geochemical signatures of Sr contents, Mn/Sr and Rb/Sr ratios, and δ18O values, with a multiple collector-inductively coupled plasma-mass spectrometer (MC-ICP-MS).The chemostratigraphy of the 87Sr/86Sr ratios of the drilled samples displays a smooth curve and two large positive shifts during Ediacaran time. The combination of the detailed chemostratigraphies of δ13C, δ18O and 87Sr/86Sr values and Mn and Fe contents enables us to decode the surface environmental changes and their causes in the Ediacaran. The first large positive excursion of 87Sr/86Sr occurred together with negative δ13C and positive δ18O excursions. The higher 87Sr/86Sr values indicate an enhancement of continental weathering, whereas the positive δ18O excursion suggests global cooling. Global regression due to global cooling enhanced the oxidative decay of exposed marine organic sediments and continental weathering. Accelerated influx of nutrients promoted primary productivity, resulting in oxidation of dissolved organic carbon (DOC), whereas active sulfate reduction due to a higher sulfate influx from the continents caused remineralization of the large DOC, both of which caused a negative δ13C anomaly. The 580 Ma Gaskiers glaciation accounts for the close correlation among the positive 87Sr/86Sr, negative δ13C and positive δ18O excursions.The second large positive shift of 87Sr/86Sr firstly accompanied a positive δ13C excursion, and continued through the Shuram δ13C negative excursion. The positive correlation of δ13C and 87Sr/86Sr values is consistent with an enhanced continental weathering rate due to continental collisions that built Trans-Gondwana mountain chains, and with a higher primary activity due to the enhancement of continental weathering and consequent higher nutrient contents in seawater. The accompanied increase in Mn and Fe contents implies a gradual decline of the seawater oxygen content due to more active aerobic respiration and oxidation of reductive materials flowing in the oceans. In the Shuram excursion, higher 87Sr/86Sr values and a transition from increase to decrease in Mn and Fe contents were accompanied by the large negative δ13C excursion. The higher 87Sr/86Sr values are the first compelling evidence for enhanced continental weathering, which was responsible for the large δ13C anomaly through the remineralization of the DOC by more active sulfate reduction due to a higher sulfate influx. Higher Mn and Fe contents in the early and middle stages of the excursion suggest a decline in the oxygen content of seawater due to oxidative decay of the DOC, whereas in the late stages the decrease in Mn and Fe contents is consistent with oceanic oxygenation.The emergence of Ediacara biota after the Gaskiers glaciation and the prosperity of the latest Ediacaran is concomitant with the formation of more radiogenic seawater with high 87Sr/86Sr values, suggesting that enhanced continental weathering, and the consequent higher influx of nutrients, played an important role in biological evolution.  相似文献   
30.
The ca. 2.2–2.1 Ga Magondi Supergroup on the Zimbabwe Craton in Southern Africa is mainly composed of sedimentary rocks deposited in a rift basin/passive continental margin, which record a unique episode in carbon isotope perturbation called the Lomagundi–Jatuli Event (LJE). This study reports new U–Pb ages of detrital zircons from the Deweras and Lomagundi groups of the Magondi Supergroup, and of igneous zircons from underlying granitoids, to constrain the timing of the LJE and to identify the provenance of the Magondi Supergroup. Most analysed detrital zircon grains range in ages between ca. 2.9 and 2.6 Ga. Three ca. 2.3–2.2 Ga detrital zircons from sandstone of the Deweras Group, with the youngest 207Pb‐206Pb age of 2,216 ± 22 Ma, indicate the onset of LJE in the Zimbabwe Craton was almost simultaneous to that in Fennoscandia and the Superior Craton, supporting the global synchronicity of the LJE.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号