首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   646篇
  免费   32篇
  国内免费   3篇
测绘学   36篇
大气科学   48篇
地球物理   175篇
地质学   252篇
海洋学   68篇
天文学   64篇
综合类   8篇
自然地理   30篇
  2022年   3篇
  2021年   10篇
  2020年   13篇
  2019年   11篇
  2018年   25篇
  2017年   29篇
  2016年   37篇
  2015年   29篇
  2014年   37篇
  2013年   44篇
  2012年   37篇
  2011年   37篇
  2010年   32篇
  2009年   39篇
  2008年   33篇
  2007年   38篇
  2006年   29篇
  2005年   17篇
  2004年   17篇
  2003年   10篇
  2002年   13篇
  2001年   9篇
  2000年   6篇
  1999年   10篇
  1998年   8篇
  1997年   10篇
  1996年   6篇
  1995年   7篇
  1994年   9篇
  1993年   6篇
  1992年   5篇
  1991年   4篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   4篇
  1985年   2篇
  1984年   4篇
  1981年   4篇
  1980年   2篇
  1979年   4篇
  1978年   3篇
  1977年   4篇
  1976年   3篇
  1975年   2篇
  1974年   5篇
  1951年   2篇
  1948年   1篇
  1946年   1篇
排序方式: 共有681条查询结果,搜索用时 187 毫秒
91.
In flood risk management, the divergent concept of resilience of a flood defense system cannot be fully defined quantitatively by one indicator and multiple indicators need to be considered simultaneously. In this paper, a multi-objective optimization (MOO) design framework is developed to determine the optimal protection level of a levee system based on different resilience indicators that depend on the probabilistic features of the flood damage cost arising under the uncertain nature of rainfalls. An evolutionary-based MOO algorithm is used to find a set of non-dominated solutions, known as Pareto optimal solutions for the optimal protection level. The objective functions, specifically resilience indicators of severity, variability and graduality, that account for the uncertainty of rainfall can be evaluated by stochastic sampling of rainfall amount together with the model simulations of incurred flood damage estimation for the levee system. However, these model simulations which usually require detailed flood inundation simulation are computationally demanding. This hinders the wide application of MOO in flood risk management and is circumvented here via a surrogate flood damage modeling technique that is integrated into the MOO algorithm. The proposed optimal design framework is applied to a levee system in a central basin of flood-prone Jakarta, Indonesia. The results suggest that the proposed framework enables the application of MOO with resilience objectives for flood defense system design under uncertainty and solves the decision making problems efficiently by drastically reducing the required computational time.  相似文献   
92.
The Yucatán Peninsula, Mexico, has typically been considered a tectonically stable region with little significant seismic activity. The region though, is one that is regularly affected by hurricanes. A detailed survey of ca 100 km of the eastern Yucatán and Cozumel coast identified the presence of ridges containing individual boulders measuring >1 m in length. The boulder ridges reach 5 m in height and their origin is associated with extreme wave event activity. Previously modelled tsunami waves from known seismically active zones in the region (Muertos Thrust Belt and South Caribbean Deformed Belt) are not of sufficient scale in the area of the Yucatán Peninsula to have produced the boulder ridges recorded in this study. The occurrence of hurricanes in this region is more common, but two of the most destructive (Hurricane Gilbert 1988 and Hurricane Wilma 2005) produced coastal waves too small to have created the ridges recorded here. In this paper, a new tsunami model with a source area located on the Motagua/Swan Island Fault System has been generated that indicates a tsunami event may have caused the extreme wave events that resulted in the deposition of the boulder ridges.  相似文献   
93.
Rapid water level rise due to climate change has the potential to remobilize loose sediments along shorelines and increase the turbidity of nearshore waters, thereby impacting water quality and aquatic ecosystem health. Siling Lake is one of the largest and most rapidly expanding lakes on the Tibetan Plateau. Between 2000 and 2017, this lake experienced an increase in water level of about 8 m and a doubling in water turbidity. Here, using this lake as a study site, we used a wave model and high-resolution remote sensing of turbidity (Landsat-8) to assess the potential connection between water-level rise, enhanced wind-driven sediment resuspension and water turbidity. Our analysis revealed that strong bottom shear stresses triggered by wind-generated waves over newly flooded areas were related to an increase in water turbidity. The spatial variability of Siling Lake turbidity showed a strong dependence on local wind characteristics and fetch. Two factors combined to drive the increase in turbidity: (1) high wave energy leading to high bottom shear stresses, and (2) flooding of unvegetated shallow areas. Using a new relationship between wave energy and turbidity developed here, we expect the increase in turbidity of Siling Lake to taper off in the near future due to the steep landscape surrounding the lake that will prevent further flooding. Our results imply that rising water levels along the coast are not only expected to influence terrestrial ecosystems but could also change water quality. The methodology presented herein could be applied to other shorelines affected by a rapid increase in water level. © 2020 John Wiley & Sons, Ltd.  相似文献   
94.
We use a hydrodynamic model applied to an idealized fan-shaped basin to explore the morphology and dynamics of radial sand ridges in a convergent coastal system. A positive morphological feedback between channel incision and flow redistribution is responsible for the formation of the channel-ridge pattern. The selection mechanism of bottom wavelength is associated with flow concentration in the deeper part of the channels. Our results are compared to sediment and hydraulic dynamics in the radial sand ridges (RSRs) in China. In a convergent, sloping basin the tangentially averaged tidal velocity peaks at 47 km from the apex. This distance is similar to the arc distance, 62 km, where the RSRs are most incised. An offshore shift in tidal phase results in stronger flows near the north coastline, explaining the presence of asymmetric channel patterns. A numerical stability analysis indicates that small radial oscillations with a wavelength of 10° to 15° maximize the velocity in the troughs. This oscillation wavelength also emerges in the RSRs, which display a peak in spectral energy at a radial wavelength between 25° to 37.5°. High-resolution numerical simulations in the RSRs confirm that flow concentration occurs in the deeper part of the channels, keeping them flushed. We therefore conclude that the RSRs display morphometric characteristics similar to other tidal incisions, like tidal inlets and intertidal channels. This result further supports the dominant role of tidal prism and related peak velocities in incising coastal landscapes. © 2020 John Wiley & Sons, Ltd.  相似文献   
95.
This paper develops a conceptual model and an indicator system for measuring economic resilience of resource-based cities based on the theory of evolutionary resilience and the related concepts of persistence, adaptation, and transformation. Nineteen resource- based cities in Northeast China were analyzed using the indicator system. The results showed that Liaoning and Jilin provinces had higher economic resilience than Heilongjiang Province. Panjin, Benxi, and Anshan in Liaoning Province were the top three cities, while Shuangyashan and other coal-based cities in Heilongjiang Province ranked last. Metals- and petroleum-based cities had significantly higher resilience than coal-based cities. The differences in persistence, adaptability, transformation, and resilience among resource-based cities decreased since the introduction of the Northeast Revitalization Strategy in 2003. Forestry-based cities improved the most in terms of resilience, followed by metals-based and multiple-resource cities; however, resilience dropped for coal-based cities, and petroleum-based cities falling the most. The findings illustrate the importance and the way to develop a differentiated approach to improve resilience among resource-based cities.  相似文献   
96.
Among the disasters facing Taiwan, earthquakes and typhoons incur the greatest monetary losses, and landslide disasters inflict the greatest damage in mountainous areas. The nationwide landslide susceptibility map gives an indication of where landslides are likely to occur in the future; however, there is no objective index indicating the location of landslide hotspots. In this study, we used statistical analysis to locate landslide hotspots in catchments in Taiwan. Global and local spatial autocorrelation analysis revealed the existence of landslide clusters between 2003 and 2012 and identified a concentration of landslide hotspots in the eastern part of Central Taiwan. The extreme rainfall brought by typhoon Morakot also led to the formation of new landslide hotspots in Southern Taiwan. This study provides a valuable reference explaining changes in landslide hotspots and identifying areas of high hotspot concentration to facilitate the formulation of strategies to deal with landslide risk.  相似文献   
97.
Landslide seismic signals support researchers to estimate magnitudes and locations of landslides. They can serve as a crucial data for landslide warning systems. However, the randomness of landslide locations makes the acquisition of landslide-induced seismic signals difficult and limits the number of available field data. The objectives of this study are to establish a numerical modeling approach to examine the characteristics of seismic signals induced by landslides and perform parametrical study. The two-dimensional particle flow code (PFC) and Fast Lagrangian Analysis of Continua (FLAC) are coupled to simulate the landslide process. The force and velocity data at the coupled interfaces of FLAC and PFC are transferred back and forth via a Socket I/O connection. Four locations were monitored for the induced vertical seismic signals, including velocity, acceleration, and stress histories. The signals were analyzed by Hilbert-Huang transform to obtain the time-frequency spectrograms for examining the characteristics of the signals. The particle size, wall friction, particle friction, and parallel bond of PFC input parameters were parametrically investigated. The Xiaolin landslide in 2009 was successfully simulated, and the characteristics of the seismic signals were studied and compared with the data from a broadband seismic station. These results demonstrate that terrain and transition in the movement type of a complex landslide do influence the seismic signals. A landslide with larger rock particles generates lower-frequency content seismic signals. Also, there can be approximately 40 s to escape before a large-scale landslide hits if seismic instrumentation is installed. The method proposed can be further applied for studies on many other large-scale rock avalanches to verify recorded signals and further correlate the signals with the landslide characteristics.  相似文献   
98.
Critical rainfall thresholds for landslides are powerful tools for preventing landslide hazard. The thresholds are commonly estimated empirically starting from rainfall events that triggered landslides in the past. The creation of the appropriate rainfall–landslide database is one of the main efforts in this approach. In fact, an accurate agreement between the landslide and rainfall information, in terms of location and timing, is essential in order to correctly estimate the rainfall–landslide relationships. A further issue is taking into account the average moisture conditions prior the triggering event, which reasonably may be crucial in determining the sufficient amount of precipitation. In this context, the aim of this paper is exploiting historical landslide and rainfall data in a spatial database for the derivation of critical rainfall thresholds for landslide occurrence in Sicily, southern Italy. The hourly rainfall events that caused landslides occurred in the twentieth century were specifically identified and reconstructed. A procedure was proposed to automatically convert rain guages charts recorded on paper tape into digital format and then to provide the cumulative rainfall hyetograph in digital format. This procedure is based on a segmentation followed by signal recognition techniques which allow to digitalize and to recognize the hyetograph automatically. The role of rainfall prior to the landslide events was taken into account by including in the analysis the rainfall occurred 5, 15 and 30 days before each landslide. Finally, cumulated rainfall duration thresholds for different exceedance probability levels were determined. The obtained thresholds resulted in agreement with the regional curves proposed by other authors for the same area; antecedent rainfall turned out to be particularly important in triggering landslides.  相似文献   
99.
Iran is a developing country with arid and semiarid regions. Poor management of water resources combined with the effects of climate change is leading to the drying of several rivers and wetlands. Several planned water development projects, primarily for agricultural expansion, will be implemented in the coming years which could worsen impacts on vulnerable aquatic ecosystems. Proper water resources management is essential to meet present and future residential, environmental, industrial, and agricultural demands in semiarid regions. This paper presents projections of how the availability of water resources will change in the Karkheh river basin of Iran for the period 2010–2059 employing sustainability criteria in the form of time-based reliability, volumetric reliability, resiliency, and vulnerability. This paper’s results show that consideration of environmental receptors as a stakeholder of water use places limitations on agricultural development within the Karkheh river basin.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号