首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   2篇
测绘学   2篇
大气科学   1篇
地球物理   6篇
地质学   18篇
海洋学   1篇
天文学   2篇
综合类   2篇
自然地理   3篇
  2023年   1篇
  2020年   1篇
  2019年   4篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2012年   3篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
  2007年   4篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2001年   1篇
  2000年   1篇
排序方式: 共有35条查询结果,搜索用时 62 毫秒
31.
Lawsonite eclogite and garnet blueschist occur as metre-scale blocks within serpentinite mélange in the southern New England Orogen (SNEO) in eastern Australia. These high-P fragments are the products of early Palaeozoic subduction of the palaeo-Pacific plate beneath East Gondwana. Lu–Hf, Sm–Nd, and U–Pb geochronological data from Port Macquarie show that eclogite mineral assemblages formed between c. 500 and 470 Ma ago and became mixed together within a serpentinite-filled subduction channel. Age data and P–T modelling indicate lawsonite eclogite formed at ~2.7 GPa and 590°C at c. 490 Ma, whereas peak garnet in blueschist formed at ~2.0 GPa and 550°C at c. 470 Ma. The post-peak evolution of lawsonite eclogite was associated with the preservation of pristine lawsonite-bearing assemblages and the formation of glaucophane. By contrast, the garnet blueschist was derived from a precursor garnet–omphacite assemblage. The geochronological data from these different aged high-P assemblages indicate the high-P rocks were formed during subduction on the margin of cratonic Australia during the Cambro-Ordovician. The rocks however now reside in the Devonian–Carboniferous southern SNEO, which forms the youngest and most outboard of the eastern Gondwanan Australian orogenic belts. Geodynamic modelling suggests that over the time-scales that subduction products accumulated, the high-P rocks migrated large distances (~>1,000 km) during slab retreat. Consequently, high-P rocks that are trapped in subduction channels may also migrate large distances prior to exhumation, potentially becoming incorporated into younger orogenic belts whose evolution is not directly related to the formation of the exhumed high-P rocks.  相似文献   
32.
Williams Lake, Minnesota is a closed‐basin lake that is a flow‐through system with respect to ground water. Ground‐water input represents half of the annual water input and most of the chemical input to the lake. Chemical budgets indicate that the lake is a sink for calcium, yet surficial sediments contain little calcium carbonate. Sediment pore‐water samplers (peepers) were used to characterize solute fluxes at the lake‐water–ground‐water interface in the littoral zone and resolve the apparent disparity between the chemical budget and sediment data. Pore‐water depth profiles of the stable isotopes δ18O and δ2H were non‐linear where ground water seeped into the lake, with a sharp transition from lake‐water values to ground‐water values in the top 10 cm of sediment. These data indicate that advective inflow to the lake is the primary mechanism for solute flux from ground water. Linear interstitial velocities determined from δ2H profiles (316 to 528 cm/yr) were consistent with velocities determined independently from water budget data and sediment porosity (366 cm/yr). Stable isotope profiles were generally linear where water flowed out of the lake into ground water. However, calcium profiles were not linear in the same area and varied in response to input of calcium carbonate from the littoral zone and subsequent dissolution. The comparison of pore‐water calcium profiles to pore‐water stable isotope profiles indicate calcium is not conservative. Based on the previous understanding that 40–50 % of the calcium in Williams Lake is retained, the pore‐water profiles indicate aquatic plants in the littoral zone are recycling the retained portion of calcium. The difference between the pore‐water depth profiles of calcium and δ18O and δ2H demonstrate the importance of using stable isotopes to evaluate flow direction and source through the lake‐water–ground‐water interface and evaluate mechanisms controlling the chemical balance of lakes. Published in 2003 by John Wiley & Sons, Ltd.  相似文献   
33.
Geochemical tracers, including Ba, Co, Th, 7Be, 137Cs and 210Pb, and magnetic properties were used to characterize terrestrial runoff collected in nearshore time-series sediment traps in Hanalei Bay, Kauai, during flood and dry conditions in summer 2006, and to fingerprint possible runoff sources in the lower watershed. In combination, the tracers indicate that runoff during a flood in August could have come from cultivated taro fields bordering the lower reach of the river. Land-based runoff associated with summer floods may have a greater impact on coral reef communities in Hanalei Bay than in winter because sediment persists for several months. During dry periods, sediment carried by the Hanalei River appears to have been mobilized primarily by undercutting of low 7Be, low 137Cs riverbanks composed of soil weathered from tholeiitic basalt with low Ba and Co concentrations. Following a moderate rainfall event in September, high 7Be sediment carried by the Hanalei River was probably mobilized by overland flow in the upper watershed. Ba-desorption in low-salinity coastal water limited its use to a qualitative runoff tracer in nearshore sediment. 210Pb had limited usefulness as a terrestrial tracer in the nearshore due to a large dissolved oceanic source and scavenging onto resuspended bottom sediment. 210Pb-scavenging does, however, illustrate the role resuspension could play in the accumulation of particle-reactive contaminants in nearshore sediment. Co and 137Cs were not affected by desorption or geochemical scavenging and showed the greatest potential as quantitative sediment provenance indicators in material collected in nearshore sediment traps.  相似文献   
34.
A sewer main serving a large municipal wastewater system ruptured, discharging approximately 3,000,000 gallons (11,355,000 L) of raw human sewage into a multi-branched tidal creek estuary along the US East Coast. The biochemical oxygen demand caused severe hypoxia in the system, causing a large fish kill. The sewage load led to high fecal coliform bacteria concentrations in the creek (maximum of 270,000 CFU 100ml(-1)), which declined in an approximate logarithmic manner over the first few days. The spill caused elevated sediment fecal coliform bacteria and enterococcus counts that declined much more gradually than water column counts. Persistence of relatively high concentrations of fecal indicator bacteria in sediments for several weeks after the spill suggests that sediment sampling should be included in response to major sewage spills. The high concentration of nutrients in the spilled sewage led to several algal blooms. However, nutrient concentrations in the water column declined rapidly, demonstrating the value of conserving marshes because of their pollutant filtration function.  相似文献   
35.
Four sets of thin-section scale, Mode I (open mode), cemented microfractures are present in sandstone from the Eocene Misoa Formation, Maracaibo basin, Venezuela. The first set of microfractures is intragranular (F1), formed early during compaction and are filled with quartz cement precipitated at temperatures equal to or higher than 100 °C. The second set of microfractures (F2) is cemented by bituminite–pyrite, formed at temperatures between 60 and 100 °C, and are associated with kerogen maturation and hydrocarbon migration from underlying overpressured source rocks. The third set of microfractures (F3) is fully cemented by either quartz cement or calcite cement. The former has fluid inclusion homogenization temperatures between 149 and 175 °C. These temperatures are mostly higher than maximum burial temperatures (160 °C), suggesting that upward flow, caused by a pressure gradient, transported silica vertically which crystallized into the fractures. Upward decompression may have also caused a PCO2 drop, which, at constant temperature, allowed simultaneous carbonate precipitation into the third microfracture set. The fourth set of thin-section scale microfractures (F4) is open or partially cemented by siderite–hematite and other iron oxides. The presence of hematite and iron oxides in microfractures is evidence for oxidizing conditions that may be associated with the uplift of the Misoa formation. In order to time and place constraints on the depth of formation of the fourth set of microfractures, we have coupled published quartz cementation kinetic algorithms with uniaxial strain equations and determined if, in fact, they could be associated with the uplift of the formation. Our results suggest that thermoelastic contraction, caused by the formation's uplift, erosion, and consequent cooling is a feasible mechanism for the origin of the last fracture set. Hence, we infer that meteoric water invasion into the fractures, at the end of the uplift, cause the precipitation of oxides and the transformation of siderite to hematite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号