首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   4篇
  国内免费   2篇
大气科学   7篇
地球物理   6篇
地质学   24篇
海洋学   1篇
自然地理   1篇
  2022年   2篇
  2020年   5篇
  2018年   5篇
  2017年   6篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2010年   2篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
排序方式: 共有39条查询结果,搜索用时 203 毫秒
21.
A collection of data obtained from analytical methods in geochemistry along with the reservoir engineering and geologic data were used to investigate the reservoir continuity in the Cretaceous Fahliyan, Gadavan, Kazhdumi and Sarvak reservoirs of the super-giant Azadegan oilfield, SW Iran. The geochemical data indicate that the oil samples, with medium to high level of thermal maturity, have been generated from the anoxic marine marl/carbonate source rock(s). The Sargelu (Jurassic) and Garau (Cretaceous) formations are introduced as the main source rocks for the studied oils. The dendrogram obtained from the cluster analysis of high-resolution gas chromatography data introduces two main oil groups including Fahliyan reservoir, and Kazhdumi along with Sarvak/Gadvan reservoirs. This is confirmed by C7 Halpern star diagram, indicating that, the light oil fraction from Fahliyan reservoir is distinct from the others. Also, different pressure gradient of the Fahliyan Formation (over-pressured) relative to other reservoirs (normally-pressured) show the presence of compartments. The relation between toluene/n-heptane and n-heptane/methylcyclohexane represents the compartmentalization due to maturation/evaporative fractionation for Fahliyan and water washing for other studied reservoirs. Also, the impermeable upper part of the Fahliyan Formation and thin interbedded shaly layers in the Kazhdumi, Sarvak and Gadvan formations have controlled reservoir compartmentalization.  相似文献   
22.
Modeling flood event characteristics using D-vine structures   总被引:1,自引:0,他引:1  
The authors investigate the use of drawable (D-)vine structures to model the dependences existing among the main characteristics of a flood event, i.e., flood volume, flood peak, duration, and peak time. Firstly, different three- and four-dimensional probability distributions were built considering all the permutations of the conditioning variables. The Frank copula was used to model the dependence of each pair of variables. Then, the appropriate D-vine structures were selected using information criteria and a goodness-of-fit test. The influence of varying the data length on the selected D-vine structure was also investigated. Finally, flood event characteristics were simulated using the four-dimensional D-vine structure.  相似文献   
23.
24.
Nowadays, climate change and global warming have led to changes in the distribution of precipitation, which affect on the availability of water resources. Therefore, investigating the temporal and spatial variations of precipitation in the previous period is highly important in the future planning for flood control and local management of water resources. Considering the importance of this issue, in the present study, the precipitation concentration indices have been used for analysing precipitation changes at daily, seasonal, and annual time scales in the period of 1971 to 2011 over the Jharkhand state, India. Also, Modified Mann–Kendall test has used to study the trend of precipitation concentration indices in annual and seasonal time scales. The result shows a highly irregular and non-uniform distribution in the annual scale. For the seasonal scale an irregular and non-uniform distribution has been also observed, although the summer had a better situation than other seasons. For daily scale, none of the stations had a regular concentration and in the northeast and southern parts of the study area, there have been more irregularities. Furthermore, the results of investigating annual precipitation trend showed a combination of increasing and decreasing trend over the study area. The results of this study can be applied to manage water supplies, drainage projects, construct collection structures of urban flood, develop plans to prevent soil erosion, and designing appropriate plans to cope with drought conditions.  相似文献   
25.
Information on the particle size and reactive surface area of natural samples is essential for the application of surface complexation models (SCM) to predict bioavailability, toxicity, and transport of elements in the natural environment. In addition, this information will be of great help to enlighten views on the formation, stability, and structure of nanoparticle associations of natural organic matter (NOM) and natural oxide particles.Phosphate is proposed as a natively present probe ion to derive the effective reactive surface area of natural samples. In the suggested method, natural samples are equilibrated (?10 days) with 0.5 M NaHCO3 (pH = 8.5) at various solid-solution ratios. This matrix fixes the pH and ionic strength, suppresses the influence of Ca2+ and Mg2+ ions by precipitation these in solid carbonates, and removes NOM due to the addition of activated carbon in excess, collectively leading to the dominance of the PO4-CO3 interaction in the system. The data have been interpreted with the charge distribution (CD) model, calibrated for goethite, and the analysis results in an effective reactive surface area (SA) and a reversibly bound phosphate loading Γ for a series of top soils.The oxidic SA varies between about 3-30 m2/g sample for a large series of representative agricultural top soils. Scaling of our data to the total iron and aluminum oxide content (dithionite-citrate-bicarbonate extractable), results in the specific surface area between about 200-1200 m2/g oxide for most soils, i.e. the oxide particles are nano-sized with an equivalent diameter in the order of ∼1-10 nm if considered as non-porous spheres. For the top soils, the effective surface area and the soil organic carbon fraction are strongly correlated. The oxide particles are embedded in a matrix of organic carbon (OC), equivalent to ∼1.4 ± 0.2 mg OC/m2 oxide for many soils of the collection, forming a NOM-mineral nanoparticle association with an average NOM volume fraction of ∼80%. The average mass density of such a NOM-mineral association is ∼1700 ± 100 kg/m3 (i.e. high-density NOM). The amount of reversibly bound phosphate is rather close to the amount of phosphate that is extractable with oxalate. The phosphate loading varies remarkably (Γ ≈ 1-3 μmol/m2 oxide) in the samples. As discussed in part II of this paper series (Hiemstra et al., 2010), the phosphate loading (Γ) of field samples is suppressed by surface complexation of NOM, where hydrophilic, fulvic, and humic acids act as a competitor for (an)ions via site competition and electrostatic interaction.  相似文献   
26.
A decision tree-based approach is proposed to predict ground water quality based on the United States Salinity Laboratory (USSL) diagram using the data from aquifers in agricultural lands of Ardebil province, northwest of Iran. Several combinations of hydro chemical parameters of groundwater and monthly precipitation with different lag time were considered to find an accurate and economical alternative for groundwater quality classification. The performance evaluation was based on the number of correctly classified instances (CCI) and kappa statistics. The results suggested the suitability of decision tree-based classification approach for the used data sets. The overall average of CCI and kappa statistic for the prediction of groundwater quality classes based on the USSL diagram was 0.88 and 0.83 %, respectively. Principal component analysis (PCA) was also used to determine the important parameters for groundwater quality classification. The results showed that groundwater quality classification by decision tree is more precise and efficient in comparison with PCA. The best alternative could evaluate groundwater quality class with only two parameters: electrical conductivity and cumulative precipitation of 11 months earlier. The developed model is able to predict water quality class by only two variables and this lead to a reduction in the number of variables analyzed on a routine basis, resulting in a significant reduction in laboratory costs and latency times between the sampling moment and the outcome of the laboratory analyses.  相似文献   
27.
The prediction of the probability of cavitation occurrence to prevent serious damages in the spillways is the major concern for hydraulic engineers. In this research, the three-dimensional model of Shahid Madani Dam’s spillway was simulated with the Flow 3D software and by the comparison of numerical model results with the experi-mental data, the probability of occurrence of the cavitation phenomenon has been investigated. The flow parameters including pressure, velocity, and water depth were calculated for three different flow rates of 495 m3/s, 705 m3/s and 2 205 m3/s respectively. The Renormalization Group (RNG) turbulence model was used to simulate current turbulence. Comparison of simulation results for pressure, velocity and water depth with the results of the experimental model with two statistical indices Root Mean Square Error (RMSE) and Coefficient of Determination (R2) showed that the numerical simulation results are in good consistency with experimental model. However, simulation results indicated that at any flow rates with a return period of 1 000 years, probable maximum flood and designed flow rates, the cavitation number is not lower than the critical cavitation number; Therefore, it is predicted that the cavitation phenomenon in Shahid Madani Dam’s spillway will not happen.  相似文献   
28.
29.
30.
The cooling and tectonic history of the Higher Himalayan Crystallines (HHC) in southwest Zanskar (along the Kishtwar-Padam traverse) is constrained by K-Ar biotite and fission-track (FT) apatite and zircon ages. A total of nine biotite samples yields ages in the range of 14–24 Ma, indicating the post-metamorphic cooling of these rocks through ∼ 300°C in the Miocene. Overall, the ages become younger away from the Zanskar Shear Zone (ZSZ), which marks the basement-cover detachment fault between the HHC and the Tethyan sedimentary zone, towards the core of the HHC. The same pattern is also observed for the FT apatite ages, which record the cooling of the rocks through ∼ 120°C. The apatite ages range from 11 Ma in the vicinity of the ZSZ to 4 Ma at the granitic core of the HHC. This pattern of discordant cooling ages across the HHC in southwest Zanskar reveals an inversion of isotherms due to fast uplift-denudation (hence cooling) of the HHC core, which is, in turn, related to domal uplift within the HHC. The Chisoti granite gneiss is the exposed domal structure along the studied traverse. Cooling history of two granite gneisses at the core of the HHC is also quantified with the help of the biotite, zircon and apatite ages; the time-temperatures thus obtained indicate a rapid pulse of cooling at ∼ 6 Ma, related to accelerated uplift-denudation of the HHC core at this time. Long-term denudation rates of 0.5–0.7 mm/yr are estimated for the high-grade rocks of the Higher Himalaya in southwest Zanskar over the past 4.0–5.5 m.yr.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号