首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   2篇
  国内免费   1篇
大气科学   3篇
地球物理   10篇
地质学   16篇
海洋学   1篇
综合类   1篇
自然地理   1篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   3篇
  2015年   1篇
  2014年   4篇
  2013年   5篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2008年   1篇
  2005年   1篇
  1999年   1篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
11.
12.
Limited information is available about the use of magnetic susceptibility property to determine soil redistribution in hilly areas of the semi-arid regions. This study was conducted to evaluate the use of magnetic properties to determine soil redistribution along a hill slope following deforestation. The study area is located in the Quaternary hilly region of Lordegan district in west Iran. Ten transects were established in two land uses that included natural Querqus forested and cultivated lands. Soil samples were collected at different positions along the slope and magnetic properties (χlf, χhf, SIRM, ARM, and χfd) and selected physico-chemical properties were determined. The results (based on the χfd, SIRM/ARM) showed that the magnetic susceptibly in the calcareous materials is pre-dominantly derived during the pedogenic processes and the superparamagnetic particles which were transported to lower positions of hill slope following deforestation. The results confirmed that this methodology could be applied for monitoring soil redistribution along the slope in calcareous hilly areas in the semi-arid regions.  相似文献   
13.
Several regulatory agencies recommend screening petroleum vapor intrusion (PVI) sites based on vertical screening distance between a petroleum hydrocarbon source in soil or groundwater and a building foundation. U.S. Environmental Protection Agency (U.S. EPA) indicate the risk of PVI is minimal at buildings that are separated by more than 6 feet (1.8 m) from a dissolved-phase source and 15 feet (4.6 m) from a light nonaqueous phase liquid (LNAPL) source. This vertical screening distance method is not, however, recommended at sites with leaded gasoline sources containing ethylene dibromide (EDB) because of a lack of field data to document EDB attenuation in the vadose zone. To help address this gap, depth-discrete soil-gas samples were collected at a leaded gasoline release site in Sobieski, Minnesota (USA). The maximum concentration of EDB in groundwater (175 μg/L) at the site was high relative to those observed at other leaded gasoline release sites. Soil gas was analyzed for EDB using a modification of U.S. EPA Method TO-14A that achieved analytical detection limits below the U.S. EPA Vapor Intrusion Screening Level (VISL) for EDB based on a 10−6 cancer risk (<0.16 μg/m3). Concentrations of EDB in soil gas above LNAPL reached as high as 960 μg/m3 and decreased below the VISL within a source-separation distance of 7 feet. This result coupled with BioVapor model predictions of EDB concentrations indicate that vertical screening distances recommended by regulatory agencies at PVI sites are generally applicable for EDB over the range of anticipated source concentrations and soil types at most sites.  相似文献   
14.
ABSTRACT

In this work, the applicability of 12 solar radiation (RS) estimation models and their impacts on daily reference evapotranspiration (ETo) estimates using the Penman‐Monteith FAO-56 (PMF-56) method were tested under cool arid and semi-arid conditions in Iran. The results indicated that the average increase in accuracy of the ETo estimates by the calibrated RS models, quantified by the decrease in RMSE, was 2.8% and 6.4% for semi-arid and arid climates, respectively. Mean daily deviations in the estimated ETo by the calibrated RS equations in semi-arid climates varied from ?0.283?mm/d-1 for the Glover‐McCulloch model to 0.080?mm/d for the El-Sebaii model, with an average of ?0.109?mm/d-1, and in arid climates, they ranged from ?0.522?mm/d-1 for the Samani model to 0.668?mm/d for the El-Sebaii model, with an average of 0.125?mm/d-1.
Editor D. Koutsyiannis; Associate editor Not assigned  相似文献   
15.
The strength of anisotropic rock masses can be evaluated through either theoretical or experimental methods. The latter is more precise but also more expensive and time-consuming especially due to difficulties of preparing high-quality samples. Numerical methods, such as finite element method (FEM), finite difference method (FDM), distinct element method (DEM), etc. have been regarded as precise and low-cost theoretical approaches in different fields of rock engineering. On the other hand, applicability of intelligent approaches such as fuzzy systems, neural networks and decision trees in rock mechanics problems has been recognized through numerous published papers. In current study, it is aimed to theoretically evaluate the strength of anisotropic rocks with through-going discontinuity using numerical and intelligent methods. In order to do this, first, strength data of such rocks are collected from the literature. Then FlAC, a commercially well-known software for FDM analysis, is applied to simulate the situation of triaxial test on anisotropic jointed specimens. Reliability of this simulation in predicting the strength of jointed specimens has been verified by previous researches. Therefore, the few gaps of the experimental data are filled by numerical simulation to prevent unexpected learning errors. Furthermore, a sensitivity analysis is carried out based on the numerical process applied herein. Finally, two intelligent methods namely feed forward neural network and a newly developed fuzzy modeling approach are utilized to predict the strength of above-mentioned specimens. Comparison of the results with experimental data demonstrates that the intelligent models result in desirable prediction accuracy.  相似文献   
16.
Marine sediments typically exhibit steep porosity gradients in their uppermost centimeters. Although the decrease in porosity with depth below the sediment-water interface is primarily due to compression arising from the accumulation of overlying sediment, early diagenetic mineral dissolution and precipitation reactions may potentially also affect the porosity gradient. Here, we present a steady state compaction model, based on the mass and momentum conservation of total fluid and solid phases, in order to quantify the relative contributions of mineral reactions and physical compaction on porosity changes. The compaction model is applied to estimate hydraulic conductivity and compressive response coefficients of deep-sea sediments from measured porosity depth profiles. The results suggest an inverse relation between the compressive response coefficient and the lithogenic content of marine sediments. For deep-sea sediments exhibiting high rates of dissolution of siliceous shell fragments, the compaction model ignoring mineral reactions overestimates the hydraulic conductivity and compressive response coefficients. In contrast to non-compacting porous media, mineral dissolution in surficial sediments can lead to lower porosity. However, as illustrated for a deep-sea sediment in the equatorial Atlantic characterized by extensive dissolution of calcareous shell fragments, the effect of mineral dissolution and precipitation reactions on porosity gradients is, in most cases, negligible.  相似文献   
17.
In this study, the trends of the annual, seasonal and monthly maximum (T max) and minimum (T min) air temperatures time series were investigated for 20 stations in the western half of Iran during 1966?C2005. Three statistical tests including Mann?CKendall, Sen??s slope estimator and linear regression were used for the analysis. The annual T max and T min series showed a positive trend in 85% of the stations and a negative trend in 15% of the stations in the study region. The highest increase of T max and T min values were obtained over Kermanshah and Ahwaz at the rates of (+)0.597°C/decade and (+)0.911°C/decade, respectively. On the seasonal scale, the strongest increasing trends were identified in T max and T min data in summer. The highest numbers of stations with positive significant trends occurred in the monthly T max and T min series in August. In contrast, the lowest numbers of stations with significant positive trends were observed between November and March. Overall, the results showed similar increasing trends for the study variables, although T min generally increased at a higher rate than T max in the study period.  相似文献   
18.
Nuclear Magnetic Resonance (NMR) logging provides priceless information about hydrocarbon bearing intervals such as free fluid porosity and permeability. This study focuses on using geostatistics from NMR logging instruments at high depths of investigation to enhance vertical resolution for better understanding of reservoirs. In this study, a NMR log was used such that half of its midpoint data was used for geostatistical model construction using an ordinary kriging technique and the rest of the data points were used for assessing the performance of the constructed model. This strategy enhances the resolution of NMR logging by twofold. Results indicated that the correlation coefficient between measured and predicted permeability and free fluid porosity is equal to 0.976 and 0.970, respectively. This means that geostatistical modeling is capable of enhancing the vertical resolution of NMR logging. This study was successfully applied to carbonate reservoir rocks of the South Pars Gas Field.  相似文献   
19.
Oil formation volume factor (FVF) is considered as relative change in oil volume between reservoir condition and standard surface condition. FVF, always greater than one, is dominated by reservoir temperature, amount of dissolved gas in oil, and specific gravity of oil and dissolved gas. In addition to limitations on reliable sampling, experimental determination of FVF is associated with high costs and time-consumption. Therefore, this study proposes a novel approach based on hybrid genetic algorithm-pattern search (GA-PS) optimized neural network (NN) for fast, accurate, and cheap determination of oil FVF from available measured pressure-volume-temperature (PVT) data. Contrasting to traditional neural network which is in danger of sticking in local minima, GA-PS optimized NN is in charge of escaping from local minima and converging to global minimum. A group of 342 data points were used for model construction and a group of 219 data points were employed for model assessment. Results indicated superiority of GA-PS optimized NN to traditional NN. Oil FVF values, determined by GA-PS optimized NN were in good agreement with reality.  相似文献   
20.
Reference evapotranspiration (ETo) is significant for water resources planning and environmental studies. Many equations have been developed for ETo estimation in various geographic and climatic conditions, of which, the Penman–Monteith FAO 56 (PMF-56) equation was accepted as reference method. A major complication in estimating ETo by the PMF-56 model is the requirement for meteorological data that may not be readily available from typical weather stations in many areas of the globe. This restriction necessitates use of simpler models which require less input data. In this study, the original and five modified versions of the Hargreaves equation that require only temperature and rainfall were evaluated in humid, semi-humid, semi-arid and arid climates in Iran. The results showed that the original and modified versions of the Hargreaves equation had the poorest performance in semi-humid climate and the best performance in windy humid environment. Further, the ETo estimations with the Hargreaves equations having rainfall parameter were poor as compared to those from the PMF-56 method under majority of the climatic situations studied.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号