首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   209篇
  免费   7篇
  国内免费   3篇
测绘学   1篇
大气科学   6篇
地球物理   51篇
地质学   85篇
海洋学   19篇
天文学   45篇
自然地理   12篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   5篇
  2015年   6篇
  2014年   4篇
  2013年   10篇
  2012年   10篇
  2011年   7篇
  2010年   5篇
  2009年   19篇
  2008年   13篇
  2007年   13篇
  2006年   9篇
  2005年   12篇
  2004年   8篇
  2003年   7篇
  2002年   9篇
  2001年   10篇
  2000年   5篇
  1999年   3篇
  1998年   3篇
  1997年   4篇
  1996年   8篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1992年   6篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1984年   6篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   3篇
排序方式: 共有219条查询结果,搜索用时 31 毫秒
21.
The application of a modified version of dynamic TOPMODEL for two subcatchments at Plynlimon, Wales is described. Conservative chemical mixing within mobile and immobile stores has been added to the hydrological model in an attempt to simulate observed stream chloride concentrations. The model was not fully able to simulate the observed behaviour, in particular the short‐ to medium‐term dynamics. One of the primary problems highlighted by the study was the representation of dry deposition and cloud‐droplet‐deposited chloride, which formed a significant part of the long‐term chloride mass budget. Equifinality of parameter sets inhibited the ability to determine the effective catchment mixing volumes and coefficients or the most likely partition between occult mass inputs and chloride mass inputs determined by catchment immobile‐store antecedent conditions. Some success was achieved, in as much as some aspects of the dynamic behaviour of the signal were satisfactorily simulated, although spectral analysis showed that the model could not fully reproduce the 1/f power spectra of observed stream chloride concentrations with its implications of a wide distribution of residence times for water in the catchment. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
22.
River discharge is currently monitored by a diminishing network of gauges, which provide a spatially incomplete picture of global discharges. This study assimilated water level information derived from a fused satellite Synthetic Aperture Radar (SAR) image and digital terrain model (DTM) with simulations from a coupled hydrological and hydrodynamic model to estimate discharge in an un‐gauged basin scenario. Assimilating water level measurements led to a 79% reduction in ensemble discharge uncertainty over the coupled hydrological hydrodynamic model alone. Measurement bias was evident, but the method still provided a means of improving estimates of discharge for high flows. The study demonstrates the potential of currently available synthetic aperture radar imagery to reduce discharge uncertainty in un‐gauged basins when combined with model simulations in a data assimilation framework, where sufficient topographic data are available. The work is timely because in the near future the launch of satellite radar missions will lead to a significant increase in the volume of data available for space‐borne discharge estimation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
23.
24.
Pronounced climate warming during the past century has been well documented in high-latitude regions. Nonetheless, considerable heterogeneity exists in northern climate trends. We examined the roles of cryospheric landscape and lake depth in modulating the rate and magnitude of local climate responses through a paleolimnological study of lakes from southwest Yukon, Canada. By sampling lakes at varying distances from the Wrangell-St. Elias ice fields, we hypothesized that, for lakes of similar maximum depth, sites closest to the ice fields would be relatively complacent in terms of their chironomid and diatom assemblage changes over the past ~200 years. This hypothesis is based on the moderating effect of the glaciers on local climate, which would be most pronounced in the lakes nearest to the ice fields. However, given the known ecological differences between deep and shallow lakes, we further predicted that, for a given distance from the ice fields, a sediment record from a shallower lake would show the greatest change in stratigraphic subfossil assemblages. Because of the complicated shape of the ice fields, we applied the longitude for each site (which decreases from west to east) to approximate the proximity of our study lakes to the ice fields. Consistent with our predictions, we observed a space-transgressive pattern in the chironomid assemblage turnover that was associated with their proximity to the ice fields (r = ?0.75, P = 0.034, n = 8) across lakes of similar depth (mean maximum depth ± 1, SE = 18.1 ± 2.6 m). Considering a broader network of lakes that represented a greater range in maximum depth (4.9–29 m), we found that differences in subfossil chironomid assemblages between the modern and ca. AD 1800 sediment layers were strongly related to lake depth (r = ?0.77, P < 0.001, n = 15), but failed to detect a significant relationship with latitude or longitude (i.e. our proxy for proximity to the ice fields). Similarly, our comparative high-resolution analyses of two lakes with distinct lake morphometries, but similar proximities to the ice fields, demonstrated the predicted contrasting pattern: we observed pronounced post-1880 changes in the biotic assemblages in the shallow lake and a muted and delayed response (i.e. ~1970s) in the deeper lake. Our findings confirm that cryospheric landscape features can strongly modulate regional climate. Furthermore, our work shows that investigators need to be conscious of how climate change affects the structure and functioning of lakes of different typologies, which influences the way in which paleoclimate signals are recorded and interpreted.  相似文献   
25.
26.
27.
28.
Abstract— The petrogenesis of Apollo 12 mare basalts has been examined with emphasis on trace-element ratios and abundances. Vitrophyric basalts were used as parental compositions for the modelling, and proportions of fractionating phases were determined using the MAGFOX program of Longhi (1991). Crystal fractionation processes within crustal and sub-crustal magma chambers are evaluated as a function of pressure. Knowledge of the fractionating phases allows trace-element variations to be considered as either source related or as a product of post-magma-generation processes. For the ilmenite and olivine basalts, trace-element variations are inherited from the source, but the pigeonite basalt data have been interpreted with open-system evolution processes through crustal assimilation. Three groups of basalts have been examined: (1) Pigeonite basalts — produced by the assimilation of lunar crustal material by a parental melt (up to 3% assimilation and 10% crystal fractionation, with an “r” value of 0.3). (2) Ilmenite basalts — produced by variable degrees of partial melting (4–8%) of a source of olivine, pigeonite, augite, and plagioclase, brought together by overturn of the Lunar Magma Ocean (LMO) cumulate pile. After generation, which did not exhaust any of the minerals in the source, these melts experienced closed-system crystal fractionation/accumulation. (3) Olivine basalts — produced by variable degrees of partial melting (5–10%) of a source of olivine, pigeonite, and augite. After generation, again without exhausting any of the minerals in the source, these melts evolved through crystal accumulation. The evolved liquid counterparts of these cumulates have not been sampled. The source compositions for the ilmenite and olivine basalts were calculated by assuming that the vitrophyric compositions were primary and the magmas were produced by non-modal batch melting. Although the magnitude is unclear, evaluation of these source regions indicates that both be composed of early- and late-stage Lunar Magma Ocean (LMO) cumulates, requiring an overturn of the cumulate pile.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号