首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   185篇
  免费   13篇
  国内免费   7篇
测绘学   7篇
大气科学   16篇
地球物理   38篇
地质学   65篇
海洋学   23篇
天文学   42篇
综合类   5篇
自然地理   9篇
  2024年   1篇
  2023年   2篇
  2022年   6篇
  2021年   3篇
  2020年   7篇
  2019年   10篇
  2018年   12篇
  2017年   9篇
  2016年   16篇
  2015年   7篇
  2014年   16篇
  2013年   9篇
  2012年   13篇
  2011年   10篇
  2010年   9篇
  2009年   16篇
  2008年   7篇
  2007年   8篇
  2006年   6篇
  2005年   11篇
  2004年   2篇
  2003年   9篇
  2002年   3篇
  2001年   4篇
  2000年   3篇
  1998年   3篇
  1995年   2篇
  1994年   1篇
排序方式: 共有205条查询结果,搜索用时 272 毫秒
111.
In the interstellar medium, the most probable source of organic molecules could be non-equilibrium processes driven by photons, cosmic rays, shock waves and solid bodies’ collisions. The dense cold phase of ISM host icy dust grains—important chemical catalyst during its life cycle. Such particles consist of mineral core composed by silicate or olivine admixed with metal sulfides and oxides, with the water-icy envelope containing organic molecules. Organic molecules in the ISM evolve and become later incorporated in solar system material (comets and meteorites).The formation of polypeptides from single amino acids was traced in simulation experiments representing the inner structure of icy dust grains. Experimental chamber was irradiated at subzero temperatures at the dosage of 2.54 kRad/min. Solid frozen solutions of Gly and Phe were taken as the experimental samples inserted into the metal tube kept at subzero temperatures in the presence of liquid nitrogen. Formation of di- and tri-peptides was demonstrated after applying mass-spectrometry and high performance liquid chromatography (HPLC) techniques.Having polypeptides within the icy matrix, dust grains with ice mantles are transported to warm, dense and active protostellar regions, where ultraviolet irradiation may become important and alter the grain composition. Furthermore UVC radiation may contribute to the formation of additional amounts of polypeptides, since short-wave photons are totally adsorbed by a thin outer layer. This presumption coincides with our previous investigations concerning UV impact on prebiotic formation of the main biological molecules. Combination of two irradiation types in different stages of interstellar flight could compensate the effects of low reagents concentration and temperature. Since the primordial Earth had no atmosphere, the natural carriers could get freely onto its surface and thus raise the concentration of organic molecules.  相似文献   
112.
Abstract— Meteor Crater is one of the first impact structures systematically studied on Earth. Its location in arid northern Arizona has been ideal for the preservation of the structure and the surviving meteoric material. The recovery of a large amount of meteoritic material in and around the crater has allowed a rough reconstruction of the impact event: an iron object 50 m in diameter impacted the Earth's surface after breaking up in the atmosphere. The details of the disruption, however, are still debated. The final crater morphology (deep, bowl‐shaped crater) rules out the formation of the crater by an open or dispersed swarm of fragments, in which the ratio of swarm radius to initial projectile radius Cd is larger than 3 (the final crater results from the sum of the craters formed by individual fragments). On the other hand, the lack of significant impact melt in the crater has been used to suggest that the impactor was slowed down to 12 km/s by the atmosphere, implying significant fragmentation and fragments' separation up to 4 initial radii. This paper focuses on the problem of entry and motion through the atmosphere for a possible Canyon Diablo impactor as a first but necessary step for constraining the initial conditions of the impact event which created Meteor Crater. After evaluating typical models used to investigate meteoroid disruption, such as the pancake and separated fragment models, we have carried out a series of hydrodynamic simulations using the 3D code SOVA to model the impactor flight through the atmosphere, both as a continuum object and a disrupted swarm. Our results indicate that the most probable pre‐atmospheric mass of the Meteor Crater projectile was in the range of 4.108to 1.2.109kg (equivalent to a sphere 46–66 m in diameter). During the entry process the projectile lost probably 30% to 70% of its mass, mainly because of mechanical ablation and gross fragmentation. Even in the case of a tight swarm of particles (Cd < 3), small fragments can separate from the crater‐forming swarm and land on the plains (tens of km away from the crater) as individual meteorites. Starting from an impactor pre‐atmospheric velocity of ?18 km/s, which represents an average value for Earth‐crossing asteroids, we find that after disruption, the most probable impact velocity at the Earth's surface for a tight swarm is around 15 km/s or higher. A highly dispersed swarm would result in a much stronger deceleration of the fragments but would produce a final crater much shallower than observed at Meteor Crater.  相似文献   
113.
Bacteriohopanepolyols (BHPs) are a diverse group of membrane lipids produced by a wide variety of bacteria and can be used as molecular biomarkers for bacterial processes and populations in both modern and ancient environments. A group of BHPs, including adenosylhopane and structurally related compounds, have been identified as being specific to soils, enabling the transport of terrestrial organic matter (terrOM) to the marine realm to be monitored. Estuary surface sediment samples were obtained from the five Great Russian Arctic Rivers (GRARs; Ob, Yenisey, Lena, Indigirka and Kolyma) and river sediments were obtained from two North American Rivers (Yukon and Mackenzie). Analysis of the BHP signatures, using high performance liquid chromatography–tandem mass spectrometry (HPLC–MSn), indicated the presence of 15 different BHPs originating from a variety of different bacteria, as well as a significant presence of terrestrially derived OM. Total BHP abundance and the contribution of the “soil-marker” BHPs to the total BHP pool increased eastwards among the GRAR sediments. This suggests increasing terrestrial OM or increased preservation of OM as a result of shorter periods of permafrost thawing. The North American rivers showed greatly differing BHP levels between the Yukon and Mackenzie rivers, with a greater BHP input and thus a relatively higher soil OM contribution from the Yukon. The Indigirka River basin in the eastern Siberian Arctic appeared to be the epicentre in the pan-Arctic BHP distribution trend, with the highest “soil-marker” BHPs but the lowest tetrafunctionalised BHPs. Aminobacteriohopanepentol, an indicator of aerobic methane oxidation, was observed in all the sediments, with the source being either the marine environment or methane producing terrestrial environments.  相似文献   
114.
Two years of in situ radon concentration measurements in the atmospheric surface layer have been collected in a central Italy town (L’Aquila), located in the Aterno river valley. These data have been analyzed in order to study the controlling mechanisms of surface radon abundance; observations of coincident meteorological parameters confirmed the role of dynamics on the local removal rate of this tracer. The relatively high negative correlation of hourly data of surface wind speed and radon activity concentration (R = −0.54, on annual scale) suggests that dynamical removal of radon is one of the most important controlling processes of the tracer accumulation in the atmospheric surface layer. An attempt is made to quantify the precipitation impact on radon soil fluxes. No anticorrelation of radon and precipitation comes out from the data (R = −0.15), as in previous studies. However, since the main physical parameter affecting the ground radon release is expected to be the soil accumulation of water, snow or ice, the emission flux has also been correlated with soil moisture; in this way a much clearer anticorrelation is found (R = −0.54).  相似文献   
115.
By analysing records made in the northern taiga forests of the Lapland Reserve (Kola Peninsula, Russia) during 1930–1998, we unexpectedly discovered a decline in the length of the snow-free and ice-free periods by 15–20 days due to both delayed spring and advanced autumn/winter. Respective seasonal temperatures best explained the dates of all phenological phases: 1 °C shift in temperature was approximately equal to 2–5 day shift in phenology. However the phenological shiftsduring the observation period are much larger than could be expected from the slight (0.56 °C) drop in temperatures during August–September, suggesting that the biotic effects of a very slight cooling have been enhanced by one or more unknown factors. Although emissions of sulphur dioxide from the nickel-copper smelter at Monchegorsk may have contributed to the observed trend (via changes in regional radiative budget), we found no evidence of direct pollution impact on dates of birch autumnal coloration or birch leaf fall, which exhibited the largest (22 days) shift between 1930 and 1998. The detected phenological trends agree with an increase in winter (snow) precipitation in the study area by 44%; however, effects of precipitation on any of the investigated phenological phases were far from significant. Our results highlight the importance of phenological records for the assessment of past regional environmental changes, and demonstrates that the prediction of even the simplest biotic responses to the Global Changes requires a profound understanding of the interactive impact of abiotic factors on the ecosystem.  相似文献   
116.
117.
118.
Meromictic soda and saline lakes are unique ecosystems characterized by the stability of physical,chemical and biological parameters,and they are distributed all over the world.Lakes located in regions with average annual negative air temperature are of particular interest because of the presence of two periods with intensive and dynamic processes:the so-called biological summer and the long ice season with the biological spring.Soda Lake Doroninskoe is located in Eastern Transbaikalia(51°14′N,112°14′E) in the permafrost zone in an extreme continental climate,and is covered by ice for seven months per year.The structure and diversity of the microbial communities throughout the water column of the lake was studied by 16 S r RNA gene amplicon metasequencing.Different species with specific functions were found to dominate at different depths.Metabolically flexible bacteria with a capacity to switch between anoxygenic photosynthesis and aerobic chemotrophic metabolism dominate in soda Lake Doroninskoe.  相似文献   
119.
We report the isolation of a cold-adapted bacterium belonging to the genus Janthinobacterium (named AU11), from a water sample collected in Lake Uruguay (King George Island, South Shetlands). AU11 (gro...  相似文献   
120.
Temporal variability and population structure of planktonic ostracods were investigated for the first time in the South Adriatic Sea during 1996. The maximal total ostracod abundance (1167 ind·100 m−3; 69% juveniles, 18% females and 13% males) was recorded in February. Thirteen species of marine planktonic ostracods were identified. Porroecia spinirostris and Archiconchoecia striata dominated the ostracod assemblage, accounting respectively for 62% and 18% of the total abundance. Their annual peaks were recorded during the cold season, which was the period of their intense reproduction, with favourable temperature conditions and lack of predators. The females surpassed the males in abundance in most species. The presence of the mesopelagic species indicated a strong influence of intermediate layer water masses from the Eastern Mediterranean Sea.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号