首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   408篇
  免费   44篇
  国内免费   33篇
测绘学   8篇
大气科学   22篇
地球物理   111篇
地质学   262篇
海洋学   16篇
天文学   18篇
综合类   26篇
自然地理   22篇
  2023年   8篇
  2022年   19篇
  2021年   41篇
  2020年   32篇
  2019年   24篇
  2018年   78篇
  2017年   40篇
  2016年   60篇
  2015年   36篇
  2014年   28篇
  2013年   38篇
  2012年   13篇
  2011年   19篇
  2010年   6篇
  2009年   12篇
  2008年   7篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1996年   2篇
  1995年   2篇
  1986年   1篇
排序方式: 共有485条查询结果,搜索用时 62 毫秒
131.
In this study, the baseline period (1960–1990) precipitation simulation of regional climate model PRECIS is evaluated and downscaled on a monthly basis for northwestern Himalayan mountains and upper Indus plains of Pakistan. Different interpolation models in GIS environment are used to generate fine scale (250?×?250 m2) precipitation surfaces from PRECIS precipitation data. Results show that the multivariate extension model of ordinary kriging that uses elevation as secondary data is the best model especially for monsoon months. Model results are further compared with observations from 25 meteorological stations in the study area. Modeled data show overall good correlation with observations confirming the ability of PRECIS to capture major precipitation features in the region. Results for low and erratic precipitation months, September and October, are however showing poor correlation with observations. During monsoon months (June, July, August) precipitation pattern is different from the rest of the months. It increases from south to north, but during monsoon maximum precipitation is in the southern regions of the Himalayas, and extreme northern areas receive very less precipitation. Modeled precipitation toward the end of the twenty-first century under A2 and B2 scenarios show overall decrease during winter and increase in spring and monsoon in the study area. Spatially, both scenarios show similar pattern but with varying magnitude. In monsoon, the Himalayan southern regions will have more precipitation, whereas northern areas and southern plains will face decrease in precipitation. Western and south western areas will suffer from less precipitation throughout the year except peak monsoon months. T test results also show that changes in monthly precipitation over the study area are significant except for July, August, and December. Result of this study provide reliable basis for further climate change impact studies on various resources.  相似文献   
132.
ABSTRACT

In this study, three representative concentration pathways (RCPs) and 15 general circulation models of the Coupled Model Intercomparison Project Phase 5 were used to assess the behaviour of precipitation (P) and surface air temperature (SAT) over part of the Songhua River Basin. The Water Evaluation and Planning (WEAP) model linked with SAT and P was used for monthly simulation of streamflow to assess the influence of land use/land cover and climate change on the streamflow. The results suggest that, under RCP2.6, RCP4.5 and RCP8.5, the SAT over the study area may increase in the 21st century by 1.12, 2.44 and 5.82°C, respectively. Moreover, by the middle of the 21st century, streamflow in the basin may have decreased by 19%. The decrease in streamflow may be due to changed land use conditions and water withdrawal, having critical implications for management and future planning of water resources in the basin.  相似文献   
133.
An extensive, reprocessed two‐dimensional (2D) seismic data set was utilized together with available well data to study the Tiddlybanken Basin in the southeastern Norwegian Barents Sea, which is revealed to be an excellent example of base salt rift structures, evaporite accumulations and evolution of salt structures. Late Devonian–early Carboniferous NE‐SW regional extensional stress affected the study area and gave rise to three half‐grabens that are separated by a NW‐SE to NNW‐SSE trending horst and an affiliated interference transfer zone. The arcuate nature of the horst is believed to be the effect of pre‐existing Timanian basement grain, whereas the interference zone formed due to the combined effect of a Timanian (basement) lineament and the geometrical arrangement of the opposing master faults. The interference transfer zone acted as a physical barrier, controlling the facies distribution and sedimentary thickness of three‐layered evaporitic sequences (LES). During the late Triassic, the northwestern part of a salt wall was developed due to passive diapirism and its evolution was influenced by halite lithology between the three‐LES. The central and southeastern parts of the salt wall did not progress beyond the pedestal stage due to lack of halite in the deepest evaporitic sequence. During the Triassic–Jurassic transition, far‐field stresses from the Novaya Zemlya fold‐and‐thrust belt reactivated the pre‐salt Carboniferous rift structures. The reactivation led to the development of the Signalhorn Dome, rejuvenated the northwestern part of the salt wall and affected the sedimentation rates in the southeastern broad basin. The salt wall together with the Signalhorn Dome and the Carboniferous pre‐salt structures were again reactivated during post‐Early Cretaceous, in response to regional compressional stresses. During this main tectonic inversion phase, the northwestern and southeastern parts of the salt wall were rejuvenated; however, salt reactivation was minimized towards the interference transfer zone beneath the centre of the salt wall.  相似文献   
134.
Semi-arid and dry sub-humid areas (especially in the tropics) are characterized by high inter-annual and intra-seasonal rainfall variability. Agriculture, which employs the bulk of the rapidly increasing populations, is largely rain-fed, low-input based and highly resource dependent. Recent spates of drought have, therefore, exacerbated the now-too-familiar specter of famine and starvation in these areas with glaring examples being the recurring episodes in sub-Saharan Africa since the great Sahel drought of 1969–1973. A great need for accurate and timely hazard forecast products in aid of agriculture thus exists.Several schemes are currently employed by various agencies around the globe in this direction. There does remain, however, a gap between product provision and user expectations. This paper examines this gap suggesting a five-point framework within which it can be addressed as an action agenda for the climate science community. The paper posits that changes are possible to existing methodologies (related to three of these points), which, within the context of current science, can greatly enhance the utility of forecast products for agriculture in marginal areas. The remaining two points have, however, been identified as requiring additional applied research and necessary pointers for addressing these issues are provided. First is the need for appropriate impact-related indicators for intra-seasonal and interannual rainfall variability that are easy to compute, amenable to forecasting and follow closely the experiences of farmers in marginal areas. The second is a consideration of appropriate forecast information formatting and communication medium that guarantee effective feedback between forecast producers and users. Specific examples of the status quo and of work currently underway are cited from southern Africa – a region currently attracting international attention as a result of recent droughts and the threat of famine.  相似文献   
135.
Geochronology is useful for understanding provenance, and while it has been applied to the central and western Himalaya, very little data are available in the eastern Himalaya. This study presents detrital zircon U–Pb ages from the late Palaeocene–Eocene Yinkiong Group in NE India. The samples are from the late Palaeocene to early Eocene Lower Yinkiong Formation, and the Upper Yinkiong Formation deposited during the early to mid‐Eocene within the Himalayan foreland basin. The U–Pb ages of the detrital zircon within the Lower Yinkiong Formation are older than late Palaeozoic, with a cratonic and early Himalayan Thrust Belt affinity, whereas the Cenozoic grains in the Upper Yinkiong Formation indicate a Himalayan Thrust Belt source and possibly a granitic body within the Asian plate. The shift of the sources and the changes in the foreland basin system strongly suggest that the India–Asia collision in the Eastern Himalaya began before or immediately after the deposition of the Upper Yinkiong Formation, i.e., within the early Eocene (c. 56 to 50 Ma).  相似文献   
136.
Landsat-5 Thematic Mapper (TM) dataset have been used to estimate salinity in the coastal area of Hong Kong. Four adjacent Landsat TM images were used in this study, which was atmospherically corrected using the Second Simulation of the Satellite Signal in the Solar Spectrum (6S) radiative transfer code. The atmospherically corrected images were further used to develop models for salinity using Ordinary Least Square (OLS) regression and Geographically Weighted Regression (GWR) based on in situ data of October 2009. Results show that the coefficient of determination (R2) of 0.42 between the OLS estimated and in situ measured salinity is much lower than that of the GWR model, which is two times higher (R2 = 0.86). It indicates that the GWR model has more ability than the OLS regression model to predict salinity and show its spatial heterogeneity better. It was observed that the salinity was high in Deep Bay (north-western part of Hong Kong) which might be due to the industrial waste disposal, whereas the salinity was estimated to be constant (32 practical salinity units) towards the open sea.  相似文献   
137.
138.
The Salt Range/Potwar Plateau (SRPP) is part of the Himalayan foreland and an important petroleum province in north Pakistan. The hydrocarbons are commonly produced from stacked Cambrian to Eocene clastic and carbonate reservoirs which have an average thickness of 1 km. These strata are overlain by at least 5 km of Miocene and younger continental molasse sedimentation in the deepest part of the foreland basin. Surface and subsurface (seismic interpretations and borehole data) geology combined with the timing and the patterns of sedimentation has allowed to interpret the deformation as thin skinned, with a detachment in weak Eocambrian evaporates and the development of ramp-and-flat structures, since about 8 Ma. We have reviewed the structural interpretations with new borehole logs, field geology, and reserve estimates in this paper to precisely define oil-field structures with a view on future exploration. As a result of this work, 12 oil fields are classified as three detachment folds, four fault-propagation folds, four pop-ups, and one triangle zone structure. The latter two are identified as better prospects with the last one as the best with estimated reserves of 51 million barrels of oil (MMBO). Hence, the triangle zones along with other ramp-and-flat structures from the North Potwar Deformed Zone (NPDZ) are recognized to provide potential future prospects. Finally, a 40-km-long structural cross section from NPDZ is used to discuss complex deformation of the triangle zone and duplex structures as future potential prospects. About 55 km of shortening across the NPDZ during Plio-Pleistocene time is calculated, which has important bearing on the geometry of prospects, reserve calculations, and the future exploration.  相似文献   
139.
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号