首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   6篇
  国内免费   8篇
测绘学   12篇
大气科学   5篇
地球物理   42篇
地质学   95篇
海洋学   10篇
天文学   10篇
综合类   4篇
自然地理   10篇
  2022年   5篇
  2021年   4篇
  2020年   8篇
  2019年   4篇
  2018年   18篇
  2017年   21篇
  2016年   25篇
  2015年   9篇
  2014年   17篇
  2013年   13篇
  2012年   14篇
  2011年   7篇
  2010年   5篇
  2009年   3篇
  2008年   5篇
  2007年   1篇
  2006年   4篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  1998年   2篇
  1997年   2篇
  1995年   1篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
  1981年   1篇
  1979年   3篇
排序方式: 共有188条查询结果,搜索用时 93 毫秒
51.
In recent years, hot summers (HS) have played an important role in affecting people’s health and causing natural disasters. However, it is not very clear what HS should be attributed to. In order to investigate that, the anomalous of anticyclone associated with HS in the Mediterranean and North China is examined and compared by using data during the time period 1949~2018. Statistical analysis shows that summer temperature in the Mediterranean and North China is revealing a good correlation when removing the global warming trend. The composite results indicate that the anomalous warming during HS over different regions is both dominantly controlled by an anomalous anticyclone, which enhances the subsidence adiabatic heating of the temperature. Furthermore, the subtropical high (STH) variations faithfully represent the fluctuations in summer temperature over the Mediterranean (cor = 0.78) and North China (cor = 0.80). The anticyclonic anomalies over both focus areas are associated with North Atlantic and Northwest Pacific sea surface temperature (sst), respectively. These results indicate that the total influence of the STH position anomaly should be taken into consideration in different places during HS. However, whether such atmosphere-ocean feedback can be improved by numerical experiments is worthy to be further studied.  相似文献   
52.
The axisymmetric satellite problem including radiation pressure and drag is treated. The equations of motion of the satellite are derived. The energy-like and Laplace-like invariants of motion have been derived for a general drag force function of the polar angle, and the Laplace-like invariant is used to find the orbit equation in the case of a spherical satellite. Then using the small parameter, the orbit of the satellite is determined for an axisymmetric satellite.  相似文献   
53.
We have examined the effects of the ultraviolet background radiation (UVB) on the colour–magnitude relation (CMR) of elliptical galaxies in clusters of galaxies in the hierarchical clustering scenario by using a semi-analytic model of galaxy formation. In our model the UVB photoionizes gas in dark haloes and suppresses the cooling of the diffuse hot gas on to galaxy discs. By using a semi-analytic model without the effect of the UVB, Kauffmann & Charlot found that the CMR can be reproduced by strong supernova heating because such supernova feedback suppresses the chemical enrichment in galaxies, especially for small galaxies. We find that the CMR also becomes bluer because of the UVB, in a different way from the effect of supernova feedback. While supernova feedback suppresses the chemical enrichment by a similar mechanism to galactic winds, the UVB suppresses the cooling of the hot gas. This induces suppression of the metallicity of the intracluster medium (ICM). In our model we find that the existence of the UVB can plausibly account for an observed ICM metallicity that is equal to nearly 0.3 times the solar value, and that in this case we can reproduce the CMR and the metallicity of the ICM simultaneously.  相似文献   
54.
JASMINE is the name of a Japanese infrared (K-band) scanning astrometric satellite. JASMINE (I and/or II-project) is planned to be launched between 2013 and 2017 and will measure parallaxes and proper motions with the precision of 10μas at K≃ 12 - 15 mag. JASMINE will observe a few hundred million stars belonging to the disk and the bulge components of our Galaxy, which are hidden by the interstellar dust extinction in optical bands. Furthermore, JASMINE will also obtain photometry of stars in K, J and H-bands. The main objective of JASMINE is to study the most fundamental structure and evolution of the disk and the bulge components of the Milky Way Galaxy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
55.
Summary. One hundred and fifty oriented samples were collected from 12 sites from the Tertiary basalts of Wadi Abu Tereifiya (30.0°N, 32.1° E). After alternating field demagnetization the mean direction of the natural remanent magnetization is, D = 187.9°, I = -20.8° with α95= 5.8°. This yields a palaeopole at 69.4°N, 188.3° E.
Also, 30 oriented samples were collected from two sites from Mandisha in Bahariya Oasis (28.4°N, 28.9° E). After cleaning, the mean direction of the NRM is D = 191.0°, I = 5.2° with α95= 9.9°. This yields a palaeopole position at 58.2°N, 186.7° E.
Besides, the NRM of 70 oriented samples collected from seven dioritic dykes from Wadi Abu Shihat (26.3°N, 33.2° E) was found to have a mean direction, D = 142.0°, I = -0.3°, which leads to a palaeopole position at, 44.9°N, 273.0° E. This agrees with other Mesozoic pole positions from Africa.  相似文献   
56.
Soil erosion due to surface water is a standout among the serious threat land degradation problem and an hazard environmental destruction. The first stage for every kind of soil conservation planning is recognition of soil erosion status. In this research, the usability of two new techniques remote sensing and geographical information system was assessed to estimate the average annual specific sediments production and the intensity erosion map at two sub-basins of DEZ watershed, southwest of Lorestan Province, Iran, namely Absorkh and Keshvar sub-basins with 19,920 ha, using Modified Pacific Southwest Inter-Agency Committee (MPSIAC) soil erosion model. At the stage of imagery data processing of IRS-P6 satellite, the result showed that an overall accuracy and kappa coefficient were 90.3% and 0.901, respectively, which were considered acceptable or good for imagery data. According to our investigation, the study area can be categorized into three level of severity of erosion: moderate, high, and very high erosion zones. The amount of specific sediments and soil erosion predicted by MPSIAC model was 1374.656 and 2396.574 m3 km?2 year?1, respectively. The areas situated at the center and south parts of the watershed were subjected to significant erosion because of the geology formation and ground cover, while the area at the north parts was relatively less eroded due to intensive land cover. Based on effective of nine factors, the driving factors from high to low impact included: Topography > Land use > Upland erosion > Channel erosion > Climate > Ground cover > Soil > Runoff > Surface geology. The measured sediment yield of the watershed in the hydrometric station (Keshvar station) was approximately 2223.178 m3 km?2 year?1 and comparison of the amount of total sediment yield predicted by model with the measured sediment yield indicated that the MPSIAC model 38% underestimated the observed value of the watershed.  相似文献   
57.
Draa Sfar is a polymetallic (Zn–Pb–Cu) volcanogenic massive sulfide deposit with an actual resource of 13 Mt at 4.0% Zn and 1.3% Pb. It is part of the central Jbilets area known for its several Cu–Zn ore deposits. The ore is hosted in the upper Visean-Namurien sedimentary formation. Owing to the complexity of the geology of the ore deposits, numerical simulation approach was attempted to shed light into the temperature distribution, the circulation of the hydrothermal fluid and the genesis of massive sulfide ore bodies by evaluating the permeability, porosity, and thermal conductivity. On the basis of this simulation approach, the ore is predicted to be deposited at a temperature ranging between 230 and 290 °C. This temperature range is dependent on the pre-existing temperature of the discharge area where a metal-rich fluid precipitated the ore. The duration of the Draa Sfar ore body formation is predicted to be 15, 000 to 50, 000 years. Based on geological studies of Draa Sfar deposit together with the aforementioned results of the simulation approach, an ore genetic model for the massive sulfide ore bodies is proposed. In this model, the supply of ore-forming fluids is ensured by the combination of seawater and magmatic waters. Magma that generated rhyodacite dome acted as the heat source that remobilized the circulation of these ore-bearing fluids. The NW-SE trending faults acted as potential pathways for both the downward and upward migration of the ore-forming fluids. Due to their high permeability, the ignimbritic facies, host rocks of Draa Sfar ore bodies, have favored the circulation of the fluids. The mixing between the ore-forming fluids of magmatic origin and the descending seawaters and/or in situ pore waters led to the formation the ore bodies in 35,000 years. The position and size of the ore body, determined by the simulation approach, is consistent with the actual field geological data.  相似文献   
58.
Slope stability estimation is an engineering problem that involves several parameters. The interactions between factors that affect slope instability are complex and multi-factorial, so often it is difficult to describe the slope stability mathematically. This paper, proposes the use of a genetic algorithm (GA) as a heuristic search method to find a regression model for analyzing the slope stability. For this purpose, an evolutionary algorithm based on GA was used to develop a regression model for prediction of factor of safety (FS) for circular mode failure. The proposed GA uses the root mean squared error as the fitness function and searches among a large number of possible regression models to choose the best for estimation of FS from six geotechnical and geometrical parameters. For validation of the model and checking its efficiency, a validation dataset was used to evaluate FS using the proposed model and a previously developed mathematical GA based model in the literature. Results have shown that the presented model in this study was capable of evaluating FS at a higher level of confidence regarding the other model (R = 0.89 for presented model in this study comparing R = 0.78 for the other model) and can be efficient enough to be used as a simple mathematical tool for evaluation of factor of safety for circular mode failure especially in preliminary stages of the designing phase.  相似文献   
59.
A total of 51 samples, collected from the Jurassic sediments (Ras Qattara, Yakout, Khatatba, Masajid, and Alam El Bueib (member 6) formations) of Salam-3X well, were subjected to organic geochemical analysis. Of the samples, nine have been subjected to palynofacies investigation. Based on the sedimentary organic matter, these sediments show only one palynofacies type, indicating the presence of gas- and oil-prone source rocks and reflecting deposition under marginal dysoxic–anoxic to shelf-to-basin transition conditions. The total organic content of the samples analyzed is characterized by a wide range of content, including fair, good, very good, and excellent. The organic matter quality of these samples is concentrated around types III (gas prone), III–II (gas and oil prone), and II (oil prone), reflecting gas- and oil-prone sediments, with a tendency to generate gas rather than oil; the result matches with the palynological analysis data. The temperature of maximum pyrolytic hydrocarbon generation of analyzed samples are ranging between 440 and 457 °C, reflecting thermally mature organic matter.  相似文献   
60.
Geological structures can be of great influence groundwater movement and accumulation in the surface and subsurface, and should therefore be taken into consideration in studies related to groundwater contamination impact. This study attempts to investigate the influence of geological structures on groundwater flow and groundwater salinity in Al Jaaw Plain, United Arab Emirates. A set of thematic maps derived from digital elevation model (DEM), LANDSAT, and Spaceborn Imagine Radar-C/X-Band Synthetic Aperture Radar were enhanced by applying Soble filter with 10 % threshold and equalization enhancement to reveal and map geological structures crosscut the entire region. Drainage pattern was derived from DEM automatically using D8 algorithm. The algorithm determines in which neighboring pixel any water in a central pixel will flow naturally. The trends of geological structures and drainage pattern extracted from remote sensing data were correlated with the spatial variation of hydraulic head, thickness aquifer, and groundwater salinity in the region. The results of the study reveal that the wadi courses, thickness of the aquifer, and topography are structural controlled by NNW–SSE, NE–SW, and ENE–WSW trending fault zones, significantly influencing the groundwater flow and groundwater contamination in Al Jaaw Plain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号