首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   5篇
  国内免费   2篇
测绘学   4篇
大气科学   12篇
地球物理   20篇
地质学   18篇
海洋学   7篇
天文学   3篇
自然地理   5篇
  2024年   1篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   4篇
  2018年   5篇
  2017年   2篇
  2015年   4篇
  2014年   1篇
  2013年   5篇
  2012年   8篇
  2011年   9篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   5篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  1995年   1篇
  1990年   1篇
  1984年   3篇
  1978年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有69条查询结果,搜索用时 273 毫秒
41.
Calcium and magnesium concentrations in seawater have varied over geological time scales. On short time scales, variations in the major ion composition of seawater influences coccolithophorid physiology and the chemistry of biogenically produced coccoliths. Validation of those changes via controlled laboratory experiments is a crucial step in applying coccolithophorid based paleoproxies for the reconstruction of past environmental conditions. Therefore, we examined the response of two species of coccolithophores, Emiliania huxleyi and Coccolithus braarudii, to changes in the seawater Mg/Ca ratio (≈0.5 to 10 mol/mol) by either manipulating the magnesium or calcium concentration under controlled laboratory conditions. Concurrently, seawater Sr/Ca ratios were also modified (≈2 to 40 mmol/mol), while keeping salinity constant at 35. The physiological response was monitored by measurements of the cell growth rate as well as the production rates of particulate inorganic and organic carbon, and chlorophyll a. Additionally, coccolithophorid calcite was analyzed for its elemental composition (Sr/Ca and Mg/Ca) as well as isotope fractionation of calcium and magnesium (Δ44/40Ca and Δ26/24Mg). Our results reveal that physiological rates were substantially influenced by changes in seawater calcium rather than magnesium concentration within the range estimated to have occurred over the past 250 million years when coccolithophores appear in the fossil record. All physiological rates of E. huxleyi decreased at a calcium concentration above 25 mmol L−1, whereas C. braarudii displayed a higher tolerance to increased seawater calcium concentrations. Partition coefficient of Sr was calculated as 0.36 ± 0.04 (±2σ) independent of species. Partition coefficient of Mg2+ increased with increasing seawater Ca2+ concentrations in both coccolithophore species. Calcium isotope fractionation was constant at 1.1 ± 0.1‰ (±2σ) and not altered by changes in seawater Mg/Ca ratio. There is a well-defined inverse linear relationship between calcium isotope fractionation and partition coefficient of Sr2+ in all experiments, suggesting similar controls on both proxies in the investigated species. Magnesium isotope ratios were relatively stable for seawater Mg/Ca ratios ranging from 1 to 5, with a higher degree of fractionation in Emiliania huxleyi (by ≈0.2‰ in Δ26/24Mg). Although Mg/Ca ratios in the calcite of coccolithophores and foraminifera are similar, the former have considerably higher Δ26/24Mg (by >+3‰), presumably due to differences in calcification mechanisms between the two taxa. These observations suggest, a physiological control over magnesium elemental and isotopic fractionation during the process of calcification in coccolithophores.  相似文献   
42.
How and how fast do hillslope soils form as the landscape’s morphology changes over time? Here results are shown from an ongoing study that simultaneously examines the morphologic and geochemical evolution of soil mantled hillslopes that have been exposed to distinctively different denudation history. In Northern Sierra Nevada, California, the authors are investigating a tributary basin to the Middle Fork Feather River. A major incision signal from the river is well marked in a knickpoint within the tributary basin which stretches from its mouth to the Feather River at an elevation of ~700 m to the plateau at an elevation of ~1500 m. Hillslopes are significantly steeper below the knickpoint. The area’s total denudation rates are currently being constrained using cosmogenic radio nuclides, but a previous study suggested an order of magnitude difference in total denudation rates below and above the knickpoint. When compared with topographic attributes calculated from LIDAR data, physical erosion rates can be modeled as a linear function of ridge top curvature. Surprisingly, over the wide range of total denudation rates, soil thicknesses do not vary significantly until a threshold point where soil mantled landscapes abruptly shift to bedrock dominated landscapes. Bioturbation by tree falls appear to buffer soil thickness over the wide range of physical soil erosion rates. From three hillslopes with different physical erosion rates, the concentrations of Zr, which were considered conserved during dissolution and leaching, were determined and used as a proxy for the degree of mass losses via chemical denudation. There is a general trend that colluvial soils along the hillslopes with lower physical erosion rates are enriched in fine size fractions, Zr, and pedogenic crystalline Fe oxides. Likewise, the saprolites show greater degrees of chemical denudation at the sites above the knickpoint, presumably because of the saprolites’ longer turnover time in the slowly eroding landscapes. In the two steep hillslopes below the knickpoint, no significant or systematic topgraphic trends were found for soil geochemistry. However, soils show increasing Zr enrichment in the downslope direction in the hillslope above the knickpoint, which suggests a critical denudation rate beyond which soils’ turnover time is too short to develop a geochemical catena. As detailed CRN-based soil production rates and catchment scale denudation rates are acquired, the data will be combined with a mass balance model to calculate the rates of chemical denudation and weathering in soils and saprolites along the denudation gradient.  相似文献   
43.
The research presented in this paper analyzes the emergent residential behaviors of individual actors in a context of profound social changes in the work sphere. It incorporates a long-term view in the analysis of the relationships between social changes in the work sphere and these behaviors. The general hypothesis is that social changes produce complex changes in the long-term dynamics of residential location behavior. More precisely, the objective of this paper is to estimate the propensity for professional workers to move house after a change of workplace. Our analysis draws on data from a biographical survey using a retrospective questionnaire that enables a posteriori reconstitution of the familial, professional and residential lifelines of professional workers since their departure from their parents’ home. The survey was conducted in 1996 in the Quebec City Metropolitan Area, which, much like other Canadian cities, has experienced a substantial increase in “unstable” work, even for professionals. The approach is based on event history analysis, a Temporal Geographic Information System and exploratory spatial analysis of model’s residuals. Results indicate that 48.9% of respondents moved after a job change and that the most important factors influencing the propensity to move house after a job change are home tenure (for lone adults as for couple) and number of children (for couples only). We also found that moving is associated with changing neighborhood for owners while tenants or co-tenants tend to stay in the same neighborhood. The probability of moving 1 year after a job change is 0.10 for lone adults and couples while after 2 years, the household structure seems to have an impact: the probability increased to 0.23 for lone adults and to 0.21 for couples. The outcome of this research contributes to furthering our understanding of a familial decision (to move) following a professional event (change of job), controlling for household structure, familial, professional and spatial contexts.
Marius ThériaultEmail:
  相似文献   
44.
45.
Both water level drops and erosion have previously been suggested as causes of fluid overpressures in the subsurface. Quantification of the relevance of these processes to supra-lithostatic fluid pressure formation with a wide selection of input parameters is lacking, and thus desired. The magnitudes and drop times that are required for water level drops to result in supra-lithostatic pore pressures in a variety of situations are calculated. Situations with pore fluids consisting of water, water with dissolved methane, water with a gas hydrate layer and dissolved methane in the underlying sediments, and water with dissolved methane, a gas hydrate layer, and free gas accumulation below the hydrate layer are separately addressed. The overpressure formation from reservoir gas expansion is also simulated. The simulation results demonstrate that high fluid overpressures can develop in a rock as a response to a water level drop without the presence of gas, provided that the rock has a sufficiently low compressibility. The contribution to fluid overpressuring is however dramatically increased if the pore water is saturated with methane prior to the water level drop, and is further amplified by the presence of gas hydrates and free gas accumulations beneath such hydrates. Gas expansion in reservoirs should be expected to significantly increase the fluid overpressures in shallow, sealed pressure compartments that experience erosion or water level drops, even if the water level drop duration exceeds one million years. Enough relationships between the calculated overpressure formation and the main controlling factors are provided in order to enable readers to make inferences about a variety of geological settings. Analyses of simulation results prompt us to suggest that pockmarks are likely to be triggered by gas expansion in vertical fluid migration pathways, that the giant craters at the seabed west of Albatross South in the Barents Sea result from hydrate dissociation, and that overpressure build-up due to gas expansion has contributed to reservoir overpressuring in many eroded basins, including the Hammerfest Basin in the Barents Sea.  相似文献   
46.
A two-fluid, small scale numerical ocean model was developed to simulate plume dynamics and increases in water acidity due to leakages of CO2 from potential sub-seabed reservoirs erupting, or pipeline breaching into the North Sea. The location of a leak of such magnitude is unpredictable; therefore, multiple scenarios are modelled with the physiochemical impact measured in terms of the movement and dissolution of the leaked CO2. A correlation for the drag coefficient of bubbles/droplets free rising in seawater is presented and a sub-model to predict the initial bubble/droplet size forming on the seafloor is proposed. With the case studies investigated, the leaked bubbles/droplets fully dissolve before reaching the water surface, where the solution will be dispersed into the larger scale ocean waters. The tools developed can be extended to various locations to model the sudden eruption, which is vital in determining the fate of the CO2 within the local waters.  相似文献   
47.
48.
We discuss a model for the formation of the chromospheric Ca ii K line which does not make the usual assumption of complete redistribution. Using a physically reasonable scattering model, we find significant departures due to the frequency dependence of the line source function, particularly in the relative intensity and centre-to-limb behaviour of the K1 parts of the line and in the asymmetry produced by differential velocity fields. We conclude that the frequency dependence of the K line source function must be considered in quantitative models for the formation of the K line.  相似文献   
49.
50.
Episodes of air pollution over Cape Town are identified using multi-year time series of SO2 and NOx concentrations. The associated meteorological conditions are studied both from synoptic and meso-scale perspectives using detailed observations, statistical analyses and numerical model simulations. Atmospheric conditions are most conducive to poor dispersion in the winter months, April to August. Episodes are initiated by the eastward passage of an intense, synoptic anticyclone over the Cape Town area. The 850 hPa geopotential height typically rises to 1600 gpm a day before the episode. Northeasterly berg winds are common and act to dry out the boundary layer. A nocturnal radiation inversion forms with a mean strength of 11 °C and extends from the surface to 953 hPa (500m). Gradient and thermal winds tend to cancel out providing for low net transport rates for near-surface emissions. Acoustic sounder profiles for two episodes illustrate a reduction of winds and turbulence within the boundary layer. The episode surface circulation is simulated using a two-layer model. Hills which lie upstream of Cape Town obstruct the northeasterly flow during the morning.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号