首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   4篇
大气科学   2篇
地球物理   12篇
地质学   21篇
海洋学   8篇
天文学   47篇
  2024年   2篇
  2023年   2篇
  2022年   1篇
  2020年   4篇
  2019年   2篇
  2018年   2篇
  2016年   3篇
  2015年   1篇
  2014年   9篇
  2013年   1篇
  2012年   2篇
  2011年   4篇
  2010年   5篇
  2009年   3篇
  2008年   5篇
  2007年   2篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1991年   2篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1980年   5篇
  1979年   1篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有90条查询结果,搜索用时 281 毫秒
71.
We present the result of a deep near-infrared survey of the newly identified X-ray luminous cluster of galaxies CIZA J1324.7-5736 in the Great Attractor (GA) region. In a 35 × 35 arcmin2 region, 111 galaxy candidates with   r Ks 20 > arcsec  are identified. Comparison of the extinction-corrected   K s   -band luminosity function of CIZA J1324.7-5736 with those of nearby clusters indicates that the richness class of CIZA J1324.7-5736 is almost the same as, or richer than, the Pavo, Centaurus and Hydra clusters but poorer than the Coma, Perseus and Norma clusters. CIZA J1324.7-5736 is possibly the second richest cluster in the GA region following the Norma cluster. The position of CIZA J1324.7-5736 [in the ( l , b , v ) space] is close to the Centaurus–Crux cluster and the agglomeration of galaxies detected by the Parkes H  i survey. CIZA J1324.7-5736, together with the Centaurus–Crux cluster and the H  i galaxy agglomeration, is most likely to be one of the richest local concentrations in the GA overdensity of galaxies.  相似文献   
72.
73.
Anthropogenic global warming will lead to changes in the global hydrological cycle. The uncertainty in precipitation sensitivity per 1 K of global warming across coupled atmosphere-ocean general circulation models (AOGCMs) has been actively examined. On the other hand, the uncertainty in precipitation sensitivity in different emission scenarios of greenhouse gases (GHGs) and aerosols has received little attention. Here we show a robust emission-scenario dependency (ESD); smaller global precipitation sensitivities occur in higher GHG and aerosol emission scenarios. Although previous studies have applied this ESD to the multi-AOGCM mean, our surprising finding is that current AOGCMs all have the common ESD in the same direction. Different aerosol emissions lead to this ESD. The implications of the ESD of precipitation sensitivity extend far beyond climate analyses. As we show, the ESD potentially propagates into considerable biases in impact assessments of the hydrological cycle via a widely used technique, so-called pattern scaling. Since pattern scaling is essential to conducting parallel analyses across climate, impact, adaptation and mitigation scenarios in the next report from the Intergovernmental Panel on Climate Change, more attention should be paid to the ESD of precipitation sensitivity.  相似文献   
74.
Origin and chronology of chondritic components: A review   总被引:1,自引:0,他引:1  
Mineralogical observations, chemical and oxygen-isotope compositions, absolute 207Pb-206Pb ages and short-lived isotope systematics (7Be-7Li, 10Be-10B, 26Al-26Mg, 36Cl-36S, 41Ca-41K, 53Mn-53Cr, 60Fe-60Ni, 182Hf-182W) of refractory inclusions [Ca,Al-rich inclusions (CAIs) and amoeboid olivine aggregates (AOAs)], chondrules and matrices from primitive (unmetamorphosed) chondrites are reviewed in an attempt to test (i) the x-wind model vs. the shock-wave model of the origin of chondritic components and (ii) irradiation vs. stellar origin of short-lived radionuclides. The data reviewed are consistent with an external, stellar origin for most short-lived radionuclides (7Be, 10Be, and 36Cl are important exceptions) and a shock-wave model for chondrule formation, and provide a sound basis for early Solar System chronology. They are inconsistent with the x-wind model for the origin of chondritic components and a local, irradiation origin of 26Al, 41Ca, and 53Mn. 10Be is heterogeneously distributed among CAIs, indicating its formation by local irradiation and precluding its use for the early solar system chronology. 41Ca-41K, and 60Fe-60Ni systematics are important for understanding the astrophysical setting of Solar System formation and origin of short-lived radionuclides, but so far have limited implications for the chronology of chondritic components. The chronological significance of oxygen-isotope compositions of chondritic components is limited. The following general picture of formation of chondritic components is inferred. CAIs and AOAs were the first solids formed in the solar nebula ∼4567-4568 Myr ago, possibly within a period of <0.1 Myr, when the Sun was an infalling (class 0) and evolved (class I) protostar. They formed during multiple transient heating events in nebular region(s) with high ambient temperature (at or above condensation temperature of forsterite), either throughout the inner protoplanetary disk (1-4 AU) or in a localized region near the proto-Sun (<0.1 AU), and were subsequently dispersed throughout the disk. Most CAIs and AOAs formed in the presence of an 16O-rich (Δ17O ∼ −24 ± 2‰) nebular gas. The 26Al-poor [(26Al/27Al)0 < 1 × 10−5], 16O-rich (Δ17O ∼ −24 ± 2‰) CAIs - FUN (fractionation and unidentified nuclear effects) CAIs in CV chondrites, platy hibonite crystals (PLACs) in CM chondrites, pyroxene-hibonite spherules in CM and CO chondrites, and the majority of grossite- and hibonite-rich CAIs in CH chondrites—may have formed prior to injection and/or homogenization of 26Al in the early Solar System. A small number of igneous CAIs in ordinary, enstatite and carbonaceous chondrites, and virtually all CAIs in CB chondrites are 16O-depleted (Δ17O > −10‰) and have (26Al/27Al)0 similar to those in chondrules (<1 × 10−5). These CAIs probably experienced melting during chondrule formation. Chondrules and most of the fine-grained matrix materials in primitive chondrites formed 1-4 Myr after CAIs, when the Sun was a classical (class II) and weak-lined T Tauri star (class III). These chondritic components formed during multiple transient heating events in regions with low ambient temperature (<1000 K) throughout the inner protoplanetary disk in the presence of 16O-poor (Δ17O > −5‰) nebular gas. The majority of chondrules within a chondrite group may have formed over a much shorter period of time (<0.5-1 Myr). Mineralogical and isotopic observations indicate that CAIs were present in the regions where chondrules formed and accreted (1-4 AU), indicating that CAIs were present in the disk as free-floating objects for at least 4 Myr. Many CAIs, however, were largely unaffected by chondrule melting, suggesting that chondrule-forming events experienced by a nebular region could have been small in scale and limited in number. Chondrules and metal grains in CB chondrites formed during a single-stage, highly-energetic event ∼4563 Myr ago, possibly from a gas-melt plume produced by collision between planetary embryos.  相似文献   
75.
Structures of Newtonian super-massive stars are calculated with the opacity for Comptor effectK 0/(1 + T), whereK 0=0.21(1 +X and =2.2×10–9K–1. The track of the Main-Sequence is turned right in the upper part of the HR diagram. Mass loss will occur in a Main-Sequence stage for a star with mass larger than a critical mass. The cause of mass loss and the expansion of the radius is continuum radiation pressure. The critical mass for mass loss is 1.02×106 M for a Population I star, and 1.23×105 M for Population III star. Mass loss rates expected in these stars are 3.3×10–3 and 4.0×10–3 M yr–1, respectively.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.  相似文献   
76.
In order to understand the distribution of sulfur in igneous rooks, we determined the solubility of sulfur in volcanic rock melts (tholeiite basalt, hawaiite and rhyodacite from Hawaii) at various gas compositions and at 1250° and 1300°C and 1 atm total pressure. The solubility of sulfur in the melt passes through a minimum with change in oxygen partial pressure, if other factors are held constant. For the basaltic liquid at 1200°C, most sulfur in the melt is as dissolved sulfide (S?2) at oxygen partial pressures below 10?8 atm and as dissolved sulfate at oxygen partial pressures above 10?8 atm. Based on the present solubility data, 5 per cent is inferred for volcanic gas at 1 atm total pressure in equilibrium with subaerially extruded Hawaiian tholeiite basalt (Pele's hair with 180 ppm S) at 1200°C and 10?8 atm PO2.  相似文献   
77.
This work constitutes the first survey of I isotope ratios for Scottish sea water including the first data for the west of Scotland. These data are of importance because of the proximity to the world’s second largest emission source of 129I to the sea, the Sellafield nuclear reprocessing plant, because of the increasing importance of the sea to land transfer of 129I and also as input data for dose estimates based on this pathway of 129I. 129I/127I ratios in SW Scotland reached 3 × 10−6 in 2004. No strong variation of I isotope ratios was found from 2003 to 2005 in Scottish sea waters. Iodine isotope ratios increased by about a factor of 6 from 1992 to 2003 in NE Scotland, in agreement with the increase of liquid 129I emissions from Sellafield over that time period. It is demonstrated that 129I/127I ratios agree better than 129I concentrations for samples from similar locations taken in very close temporal proximity, indicating that this ratio is more appropriate to interpret than the radionuclide concentration.  相似文献   
78.
The effects of merging histories of proto-objects on the angular momentum distributions of the present-time dark matter haloes are analysed. An analytical approach to the analysis of the angular momentum distributions assumes that the haloes are initially homogeneous ellipsoids and that the growth of the angular momentum of the haloes halts at their maximum expansion time. However, the maximum expansion time cannot be determined uniquely, because in the hierarchical clustering scenario each progenitor, or subunit, of the halo has its own maximum expansion time. Therefore the merging history of the halo may be important in estimating its angular momentum. Using the merger tree model by Rodrigues &38; Thomas, which takes into account the spatial correlations of the density fluctuations, we have investigated the effects of the merging histories on the angular momentum distributions of dark matter haloes. It was found that the merger effects, that is, the effects of the inhomogeneity of the maximum expansion times of the progenitors which finally merge together into a halo, do not strongly affect the final angular momentum distributions, so that the homogeneous ellipsoid approximation happens to be good for the estimation of the angular momentum distribution of dark matter haloes. This is because the effect of the different directions of the angular momenta of the progenitors cancels out the effect of the inhomogeneity of the maximum expansion times of the progenitors.   The contribution of the orbital angular momentum to the total angular momentum when two or more pre-existing haloes merge together was also investigated. It is shown that this contribution is more important than that of the angular momentum of diffuse accreting matter to the total angular momentum, especially when the mergers occur many times.  相似文献   
79.
Generic indoor air:subslab soil gas attenuation factors (SSAFs) are important for rapid screening of potential vapor intrusion risks in buildings that overlie soil and groundwater contaminated with volatile chemicals. Insufficiently conservative SSAFs can allow high‐risk sites to be prematurely excluded from further investigation. Excessively conservative SSAFs can lead to costly, time‐consuming, and often inconclusive actions at an inordinate number of low‐risk sites. This paper reviews two of the most commonly used approaches to develop SSAFs: (1) comparison of paired, indoor air and subslab soil gas data in empirical databases and (2) comparison of estimated subslab vapor entry rates and indoor air exchange rates (IAERs). Potential error associated with databases includes interference from indoor and outdoor sources, reliance on data from basements, and seasonal variability. Heterogeneity in subsurface vapor plumes combined with uncertainty regarding vapor entry points calls into question the representativeness of limited subslab data and diminishes the technical defensibility of SSAFs extracted from databases. The use of reasonably conservative vapor entry rates and IAERs offers a more technically defensible approach for the development of generic SSAF values for screening. Consideration of seasonal variability in building leakage rates, air exchange rates, and interpolated vapor entry rates allows for the development of generic SSAFs at both local and regional scales. Limitations include applicability of the default IAERs and vapor entry rates to site‐specific vapor intrusion investigations and uncertainty regarding applicability of generic SSAFs to assess potential short‐term (e.g., intraday) variability of impacts to indoor air.  相似文献   
80.
In the previous paper (Nagashima et al., 1982), we have reported the yearly averaged modulation of galactic cosmic ray anisotropy in the heliomagnetosphere. In the present paper, we analyze the seasonal (annual) dependence of the modulation, using the frequency modulation method. The seasonal variation of the sidereal daily variation produced from the anisotropy is resolved into variations with proper sideband frequencies, such as solar and anti-sidereal variations. These side-band variations are predominant in the rigidity region of 102 ~' 103 GV and show the following characteristics.(1) Being similar to the average sidereal variation, they are strongly dependent on the polarity state (‘positive’ or ‘negative’) of the heliomagnetosphere.(2) The side-band variations with frequencies lower than the sidereal frequency (366 cycle/year) generally predominate over those with higher frequencies. The most predominant variations are produced from the component of the uni-directional anisotropy projected to the Earth's rotation axis and could be observed as the solar and anti-sidereal diurnal variations.(3) If the flat neutral sheet of the heliomagnetosphere is replaced with the wavy neutral sheet, side-band variations in the positive state tend to diminish with the increase of the heliolatitudinal extent of the wavy neutral sheet, while those in the negative state almost retain their magnitude.(4) These variations depend also on the observation periods when the Earth is located either in the “toward” field or in the “away” field. This T-A dependence changes with the transition from the positive state to the negative and increases with the increase of the heliolatitudinal extent of the wavy neutral sheet. The most remarkable T-A dependence is observed in solar diurnal variation arising from the component of the unidirectional anisotropy projected to the Earth's rotation axis and can be used for the determination of the direction of the anisotropy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号