首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   3篇
  国内免费   3篇
大气科学   7篇
地球物理   22篇
地质学   35篇
海洋学   11篇
天文学   14篇
自然地理   7篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2015年   1篇
  2014年   5篇
  2013年   1篇
  2012年   2篇
  2011年   5篇
  2010年   4篇
  2009年   4篇
  2008年   2篇
  2007年   4篇
  2006年   3篇
  2005年   3篇
  2004年   6篇
  2003年   2篇
  2002年   6篇
  2001年   2篇
  1999年   4篇
  1997年   1篇
  1996年   3篇
  1995年   4篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1987年   1篇
  1986年   3篇
  1984年   2篇
  1983年   1篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1968年   1篇
排序方式: 共有96条查询结果,搜索用时 0 毫秒
91.
Phenocrystic chrome spinel crystallized in normal MORB‐type greenstones in the East Takayama area. Associated phenocryst minerals show a crystallization sequence that was olivine first, followed by plagioclase, and finally clinopyroxene. Chrome spinel ranges from 0.54 to 0.77 in Mg/(Mg+Fe2+) and 0.21 to 0.53 in Cr/(Cr+Al); the Fe3+ content varies from 0.07 to 0.22 p.f.u. (O = 4). Significant compositional differences of spinel were observed among the phenocryst mineral assemblages. Chrome spinel in the olivine–spinel assemblage shows a wide range in Cr/(Cr+Al), and is depleted in Fe2+ and Fe3+. Chrome spinel in the olivine–plagioclase–clinopyroxene–spinel assemblage is Fe2+‐ and Fe3+‐rich at relatively high Cr/(Cr+Al) ratios. Basalt with the olivine–plagioclase–spinel assemblage contains both aluminous spinel and Fe2+‐ and Fe3+‐rich spinel. The assumed olivine–spinel equilibrium suggests that chrome spinel in the olivine–spinel assemblage changed in composition from Cr‐ and Fe2+‐rich to Al‐ and Mg‐rich with the progress of fractional crystallization. Chrome spinel in the olivine–plagioclase–clinopyroxene–spinel assemblage, on the other hand, exhibits the reversed variations in Mg/(Mg+Fe2+) and in Cr/(Cr+Al) ratios that decrease and increase with the fractional crystallization, respectively. The entire crystallization course of chrome spinel, projected onto the Mg/(Mg+Fe2+)–Cr/(Cr+Al) diagram, exhibits a U‐turn, and appears to be set on a double‐lane route. The U‐turn point lies in the compositional field of chrome spinel in the olivine–plagioclase–spinel assemblage, and may be explained by plagioclase fractionation that began during the formation of the olivine–plagioclase–spinel assemblage.  相似文献   
92.
A suite of Sierra Madera Impact deformed rocks was studied and magnetic analyses were performed. We characterized the magnetic signatures of two locations, sites A and B that have different physical characteristics of shock fractured structures as well as the magnetic signatures. Shatter cone at site A has a fine-scale (few to ∼10 mm) distributed array of complete shatter cones with sharp apex. Natural remanent magnetization (NRM) of site A shatter cone is distributed within the plane that is perpendicular to the apexes of the cones. Shatter cone at site B shows no apparent cone shape or apex, instead, a relatively larger scale and multiple striated joint set (MSJS) and sinusoidal continuous peak. NRM of site B shatter cone is clustered along the apexes. The difference in magnetization direction is a likely indicator of the shock pressure where parallel to apex indicates pressures larger than 10 GPa and perpendicular to apex indicate pressures less than 10 GPa. Intensities of NRM and saturation isothermal remanent magnetization (SIRM) contrast and fluctuate within a shatter cone as well as in between two sites. We observed a random orientation of magnetic vector directions and amplitudes changing over small scales leading to the absence of coherent macro-scale signature.  相似文献   
93.
The effect of a fracture on the propagation of seismic waves can be represented in terms of the normal compliance BN and tangential compliance BT of the fracture. If   BN / BT = 1  for all fractures, the effective elastic stiffness tensor of an isotropic background containing an arbitrary orientation distribution of fractures is orthotropic (i.e., has three orthogonal planes of mirror symmetry) in the long-wave limit. However, deviations from orthotropy may occur if   BN / BT   differs significantly from unity and this can cause the principal axes of the P -wave NMO ellipse and of the variation in the PP -reflection amplitude as a function of azimuth, to deviate from the fast and slow polarization direction of a vertically propagating S -wave. Simple models of a fracture in terms of a planar distribution of cracks suggest that   BN / BT ≈ 1  for dry fractures. However, naturally occurring fractures often exhibit mineralization in the form of bridges between opposing faces of the fracture. The presence of such bridges leads to significant departures of   BN / BT   from unity.  相似文献   
94.
The aim of this article is to examine the geochemistry and geochronology of the Cadomian Mishu granites from northwest Iran, in order to elucidate petrogenesis and their role in the evolution of the Cadomian crust of Iran. The Mishu granites mainly consist of two-mica granites associated with scarce outcrops of tonalite, amphibole granodiorite, and diorite. Leucogranitic dikes locally crosscut the Mishu granites. Two-mica granites show S-type characteristics whereas amphibole granodiorite, tonalities, and diorites have I-type signatures. The I-type granites show enrichment in large-ion lithophile elements (e.g. Rb, Ba and K) and depletion in high field strength elements (e.g. Nb, Ti and Ta). These characteristics show that these granites have been formed along an ancient, fossilized subduction zone. The S-type granites have high K, Rb, Cs (and other large ion lithophile elements) contents, resembling collision-related granites. U–Pb zircon dating of the Mishu rocks yielded 238U/206Pb crystallization ages of ca. 550 Ma. Moreover, Rb–Sr errorchron shows an early Ediacaran age (547 ± 84 Ma) for the Mishu igneous rocks. The two-mica granites (S-type granites) show high 87Sr/86Sr(i) ratios, ranging from 0.7068 to 0.7095. Their ?Nd values change between ?4.2 and ?4.6. Amphibole granitoids and diorites (I-type granites) are characterized by relatively low 87Sr/86Sr(i) ratios (0.7048–0.7079) and higher values of ?Nd (?0.8 to ?4.2). Leucogranitic dikes have quite juvenile signature, with ?Nd values ranging from +1.1 to +1.4 and Nd model ages (TDM) from 1.1 to 1.2 Ga. The isotopic data suggests interaction of juvenile, mantle-derived melts with old continental crust to be the main factor for the generation of the Mishu granites. Interaction with older continental crust is also confirmed by the presence of abundant inherited zircon cores. The liquid-line of descend in the Harker diagrams suggests fractional crystallization was also a predominant mechanism during evolution of the Mishu I-type granites. The zircon U–Pb ages, whole rock trace elements, and Sr–Nd isotope data strongly indicate the similarities between the Mishu Cadomian granites with other late Neoproterozoic–early Cambrian (600–520 Ma) granites across Iran and the surrounding areas such as Turkey and Iberia. The generation of the Mishu I-type granites could be related to the subduction of the Proto-Tethyan Ocean during Cadomian orogeny, through interaction between juvenile melts and old (Mesoproterozoic or Archaean) continental crust. The S-type granites are related to the pooling of the basaltic melts within the middle–upper parts of the thick continental crust and then partial melting of that crust.  相似文献   
95.
The chemical Th–U total Pb isochron method (CHIME) of dating was carried out on accessory minerals in samples from the Okcheon metamorphic belt in Korea. Dated minerals include xenotime and monazite with overgrown mantles in a granitic gneiss clast from the Hwanggangri Formation, metamorphic allanite in garnet-bearing muscovite–chlorite schist of the Munjuri Formation, and polycrase and monazite in post-tectonic granite from the Hwanggangri area. Overgrowth of mantles took place at 369 ± 10 Ma on c. 1750 Ma cores of xenotime and monazite in the granitic gneiss. Allanite, occurring in textural equilibrium with peak metamorphic minerals, yields a CHIME age of 246 ± 15 Ma that is discriminably older than the polycrase (170 ± 6 Ma) and monazite (170 ± 3 Ma) ages of the post-tectonic granite. These chronological data suggest that some of the metasedimentary rocks in the belt formed through a single stage of metamorphism at c. 250 Ma from post-370 Ma sediments. Late Permian age signatures have also been reported from the Precambrian Gyeonggi and Yeongnam massifs that border the Okcheon metamorphic belt, and indicate that parts of the basement massifs and the metamorphic belt were affected by the same regional metamorphic event.  相似文献   
96.

The Gour Oumelalen area exposes Paleoproterozoic (1.9 Ga) marbles and calc-silicate granulites. Some marbles show a specific mineralogy characterized by the presence of a highly aluminous clinopyroxene with Al2O3 content exceeding16 wt%. This clinopyroxene shows a marked zoning with a hedenbergitic core rimmed by fassaite. Phase relations are expressed by spectacular reaction textures in calc-silicate granulites as Opx + Cpx + Pl + H2O  == > Grt + Qtz ± Am and Cpx + Ilm + Pl ± Mt = > Grt + Qtz + Spn. In olivine-bearing marbles, clinopyroxene and dolomite occur around olivine and calcite. According to thermodynamic modeling in the Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 (NCFMASHTO) system, the first stage of metamorphism is located at 800 °C and 6–7 kbar, which is followed by an increase in pressure at 9–10 kbar and 800 °C and an isobaric cooling at 680 °C. The deduced anticlockwise P–T path is consistent with a granulitic metamorphism occurring in an active continental margin context.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号