首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   779篇
  免费   34篇
  国内免费   14篇
测绘学   45篇
大气科学   39篇
地球物理   192篇
地质学   422篇
海洋学   34篇
天文学   61篇
综合类   5篇
自然地理   29篇
  2023年   5篇
  2022年   18篇
  2021年   33篇
  2020年   38篇
  2019年   30篇
  2018年   70篇
  2017年   56篇
  2016年   94篇
  2015年   46篇
  2014年   72篇
  2013年   88篇
  2012年   56篇
  2011年   51篇
  2010年   39篇
  2009年   33篇
  2008年   15篇
  2007年   11篇
  2006年   10篇
  2005年   5篇
  2004年   8篇
  2003年   6篇
  2002年   2篇
  2001年   6篇
  2000年   2篇
  1999年   1篇
  1998年   5篇
  1997年   5篇
  1995年   2篇
  1993年   5篇
  1991年   5篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1980年   2篇
  1979年   1篇
  1975年   3篇
  1971年   1篇
排序方式: 共有827条查询结果,搜索用时 0 毫秒
821.
The first step in any seismic hazard study is the definition of seismogenic sources and the estimation of magnitude-frequency relationships for each source. There is as yet no standard methodology for source modeling and many researchers have worked on this topic. This study is an effort to define linear and area seismic sources for Northern Iran. The linear or fault sources are developed based on tectonic features and characteristic earthquakes while the area sources are developed based on spatial distribution of small to moderate earthquakes. Time-dependent recurrence relationships are developed for fault sources using renewal approach while time-independent frequency-magnitude relationships are proposed for area sources based on Poisson process. GIS functionalities are used in this study to introduce and incorporate spatial-temporal and geostatistical indices in delineating area seismic sources. The proposed methodology is used to model seismic sources for an area of about 500 by 400 square kilometers around Tehran. Previous researches and reports are studied to compile an earthquake/fault catalog that is as complete as possible. All events are transformed to uniform magnitude scale; duplicate events and dependent shocks are removed. Completeness and time distribution of the compiled catalog is taken into account. The proposed area and linear seismic sources in conjunction with defined recurrence relationships can be used to develop time-dependent probabilistic seismic hazard analysis of Northern Iran.  相似文献   
822.
Stochastic Environmental Research and Risk Assessment - Considering the importance of climate change and its effects, especially in recent decades, the forecast of future climate conditions can be...  相似文献   
823.
The hyperbolic Radon transform has a long history of applications in seismic data processing because of its ability to focus/sparsify the data in the transform domain. Recently, deconvolutive Radon transform has also been proposed with an improved time resolution which provides improved processing results. The basis functions of the (deconvolutive) Radon transform, however, are time-variant, making the classical Fourier based algorithms ineffective to carry out the required computations. A direct implementation of the associated summations in the time–space domain is also computationally expensive, thus limiting the application of the transform on large data sets. In this paper, we present a new method for fast computation of the hyperbolic (deconvolutive) Radon transform. The method is based on the recently proposed generalized Fourier slice theorem which establishes an analytic expression between the Fourier transforms associated with the data and Radon plane. This allows very fast computations of the forward and inverse transforms simply using fast Fourier transform and interpolation procedures. These canonical transforms are used within an efficient iterative method for sparse solution of (deconvolutive) Radon transform. Numerical examples from synthetic and field seismic data confirm high performance of the proposed fast algorithm for filling in the large gaps in seismic data, separating primaries from multiple reflections, and performing high-quality stretch-free stacking.  相似文献   
824.
Complex and variable nature of the river sediment yield caused many problems in estimating the long-term sediment yield and problems input into the reservoirs. Sediment Rating Curves (SRCs) are generally used to estimate the suspended sediment load of the rivers and drainage watersheds. Since the regression equations of the SRCs are obtained by logarithmic retransformation and have a little independent variable in this equation, they also overestimate or underestimate the true sediment load of the rivers. To evaluate the bias correction factors in Kalshor and Kashafroud watersheds, seven hydrometric stations of this region with suitable upstream watershed and spatial distribution were selected. Investigation of the accuracy index (ratio of estimated sediment yield to observed sediment yield) and the precision index of different bias correction factors of FAO, Quasi-Maximum Likelihood Estimator (QMLE), Smearing, and Minimum-Variance Unbiased Estimator (MVUE) with LSD test showed that FAO coefficient increases the estimated error in all of the stations. Application of MVUE in linear and mean load rating curves has not statistically meaningful effects. QMLE and smearing factors increased the estimated error in mean load rating curve, but that does not have any effect on linear rating curve estimation.  相似文献   
825.
Rock typing and flow unit detection are more challenging in clastic reservoirs with a uniform pore system. An integrated workflow based on well logs, inverted seismic data and rock physics models is proposed and developed to address such challenges. The proposed workflow supplies a plausible reservoir model for further investigation and adds extra information. Then, this workflow has been implemented in order to define different rock types and flow units in an oilfield in the Persian Gulf, where some of these difficulties have been observed. Here, rock physics models have the leading role in our proposed workflow by providing a diagnostic framework in which we successfully differentiate three rock types with variant characteristics on the given wells. Furthermore, permeability and porosity are calculated using the available rock physics models to define several flow units. Then, we extend our investigation to the entire reservoir by means of simultaneous inversion and rock physics models. The outcomes of the study suggest that in sediments with homogeneous pore size distribution, other reservoir properties such as shale content and cementation (which have distinct effects on the elastic domain) can be used to identify rock types and flow units. These reservoir properties have more physical insights for modelling purposes and can be distinguished on seismic cube using proper rock physics models. The results illustrate that the studied reservoir mainly consists of rock type B, which is unconsolidated sands and has the characteristics of a reservoir for subsequent fluid flow unit analysis. In this regard, rock type B has been divided into six fluid units in which the first detected flow unit is considered as the cleanest unit and has the highest reservoir process speed about 4800 to 5000 mD. Here, reservoir quality decreases from flow unit 1 to flow unit 6.  相似文献   
826.
彭涛  杨建民  李俊 《海洋工程》2009,27(2):8-13
在考虑海洋工程装备在极端海况和运行海况下的载荷与受力,风载荷也是一个不可忽视的因素.目前物理模型试验仍是研究海洋工程结构物载荷与运动性能的重要手段,而深海结构物在水平漂移运动较大,如何在较大范围内得到满足试验要求的风场,是提高试验能力的重要问题.应用数值计算方法对大范围的风场模拟进行了分析,并进行了相应的物理实验,在此基础上对海洋工程试验的风场模拟提出了若干建议.  相似文献   
827.

Reservoir simulators model the highly nonlinear partial differential equations that represent flows in heterogeneous porous media. The system is made up of conservation equations for each thermodynamic species, flash equilibrium equations and some constraints. With advances in Field Development Planning (FDP) strategies, clients need to model highly complex Improved Oil Recovery processes such as gas re-injection and CO2 injection, which requires multi-component simulation models. The operating range of these simulation models is usually around the mixture critical point and this can be very difficult to simulate due to phase mislabeling and poor nonlinear convergence. We present a Machine Learning (ML) based approach that significantly accelerates such simulation models. One of the most important physical parameters required in order to simulate complex fluids in the subsurface is the critical temperature (Tcrit). There are advanced iterative methods to compute the critical point such as the algorithm proposed by Heidemann and Khalil (AIChE J 26,769–799, 1980) but, because these methods are too expensive, they are usually replaced by cheaper and less accurate methods such as the Li-correlation (Reid and Sherwood 1966). In this work we use a ML workflow that is based on two interacting fully connected neural networks, one a classifier and the other a regressor, that are used to replace physical algorithms for single phase labelling and improve the convergence of the simulator. We generate real time compositional training data using a linear mixing rule between the injected and the in-situ fluid compositions that can exhibit temporal evolution. In many complicated scenarios, a physical critical temperature does not exist and the iterative sequence fails to converge. We train the classifier to identify, a-priori, if a sequence of iterations will diverge. The regressor is then trained to predict an accurate value of Tcrit. A framework is developed inside the simulator based on TensorFlow that aids real time machine learning applications. The training data is generated within the simulator at the beginning of the simulation run and the ML models are trained on this data while the simulator is running. All the run-times presented in this paper include the time taken to generate the training data and train the models. Applying this ML workflow to real field gas re-injection cases suffering from severe convergence issues has resulted in a 10-fold reduction of the nonlinear iterations in the examples shown in this paper, with the overall run time reduced 2- to 10-fold, thus making complex FDP workflows several times faster. Such models are usually run many times in history matching and optimization workflows, which results in compounded computational savings. The workflow also results in more accurate prediction of the oil in place due to better single phase labelling.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号