首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   402篇
  免费   10篇
  国内免费   11篇
测绘学   19篇
大气科学   66篇
地球物理   97篇
地质学   128篇
海洋学   22篇
天文学   50篇
综合类   2篇
自然地理   39篇
  2021年   3篇
  2020年   6篇
  2017年   9篇
  2016年   10篇
  2015年   6篇
  2014年   9篇
  2013年   22篇
  2012年   11篇
  2011年   15篇
  2010年   15篇
  2009年   17篇
  2008年   11篇
  2007年   15篇
  2006年   19篇
  2005年   20篇
  2004年   13篇
  2003年   20篇
  2002年   14篇
  2001年   12篇
  2000年   4篇
  1999年   10篇
  1998年   7篇
  1997年   3篇
  1996年   5篇
  1995年   4篇
  1994年   8篇
  1993年   6篇
  1992年   4篇
  1991年   5篇
  1989年   5篇
  1987年   5篇
  1985年   5篇
  1984年   7篇
  1983年   5篇
  1982年   4篇
  1981年   6篇
  1980年   7篇
  1979年   4篇
  1978年   3篇
  1977年   4篇
  1976年   5篇
  1975年   12篇
  1974年   3篇
  1973年   4篇
  1971年   3篇
  1970年   5篇
  1969年   4篇
  1968年   5篇
  1967年   6篇
  1958年   2篇
排序方式: 共有423条查询结果,搜索用时 31 毫秒
331.
When assessing distribution range shifts, precise information is required on distribution limits, densities in occupied regions, unoccupied gaps, and changes in these measures over time. The local convex hull method recently developed for home range delineation to provide these measures was compared with that of the widely applied parametric kernel density estimation and with the commonly used tile method. The assessment used location records from 14 years of aerial surveys on four mammalian herbivores selected because of their distinct distribution patterns. Impala showed an almost continuous distribution with few gaps, wildebeest a wide distribution with regional concentrations, waterbuck a linear distribution along rivers, and sable antelope a widespread but patchy distribution. The kernel method tended to extend ranges beyond observed records, obscuring gaps within distributions. With parametric kernel approaches, bandwidth obtained via Least Squares Cross Validation techniques was not optimal when the local abundance was widely disparate, as was the case for wildebeest. The LoCoH method most effectively revealed meaningful gaps. The LoCoH method is advantageous for precisely mapping the distributions of conspicuous species for which the absence of records indicates true gaps in occurrence.  相似文献   
332.
High-resolution seafloor and sub-surface data were acquired as part of a site survey in Iskenderun Bay, SE Turkey to characterize the geohazards at the location of the proposed drilling site. A 3 km×3 km geophysical study reveals a pockmark field which trends NE and NNE, similar to the trend of major fault systems in the area. The pockmarks, with an average diameter of 35 m, reach their highest density in the northern part of the detailed survey area, with 13 features/km2. Acoustic anomalies in the seismic records (acoustic turbidity, blanking, enhanced reflectors) below the proposed drilling site indicated potential shallow gas beneath it. The local seismic anomalies (amplitude and frequency) parallel to stratigraphy were assigned a low gas risk. As a result of the active neotectonics in the area, the pockmark field presented a potential hazard for drilling at the original location. The geohazard study resulted in moving the proposed drilling site eastward to an area of fewer pockmarks, less sub-surface seismic anomalies, and thus a location interpreted as a lower geohazard environment.  相似文献   
333.
334.
Communities of chemosynthetic fauna that depend on seeping oil and gas have been found in the Gulf of Mexico at approximately 45 sites between 88°W and 95°W and between the 350 and 2,200 m isobaths. Investigations suggest that the number of sites and the range of occurrence will increase with additional exploration. The dominant fauna consist of species within four groups: tube worms, seep mussels, epibenthic clams, and infaunal clams. These species co-occur to some degree, but tend to form assemblages dominated by a single group. Community development is closely coupled to the geological and geochemical processes of seepage.  相似文献   
335.
A conceptually simple process which establishes a steady grain size distribution is envisioned to control the ductile creep properties of fault zones that mainly slip by frictional processes. Fracture during earthquakes and aseismic frictional creep tend to reduce grain size. However, sufficiently small grains tend to dissolve so that larger grains grow at their expense, a process called Ostwald ripening. A dynamic stedy state is reached where grain size reduction by fracture is balanced by grain growth from Ostwald ripening. The ductile creep mechanism within fault zones in hard rock is probably pressure solution where the rate is limited by diffusion along load-bearing grain-grain contacts. The diffusion paths that limit Ostwald repening are to a considerable extent the same as those for pressure solution. Active Ostwald ripening thus implies conditions suitable for ductile creep. An analytic theory allows estimation of the steady-state mean grain size and the viscosity for creep implied by this dynamic steady state from material properties and from the width, shear traction, and long-term slip velocity of the fault zone. Numerical models were formulated to compute the steady state grain size distribution. The results indicate that ductile creep, as suggested in the companion paper, is a plausible mechanism for transiently increasing fluid pressure within mostly sealed fault zones so that frictional failure occurs at relatively low shear tractions, 10 MPa. The relevant material properties are too poorly known, however, for the steady state theory (or its extension to a fault that slips in infrequent large earthquakes) to have much predictive value without additional laboratory experiments and studies of exhumed faults.  相似文献   
336.
A simple cyclic process is proposed to explain why major strike-slip fault zones, including the San Andreas, are weak. Field and laboratory studies suggest that the fluid within fault zones is often mostly sealed from that in the surrounding country rock. Ductile creep driven by the difference between fluid pressure and lithostatic pressure within a fault zone leads to compaction that increases fluid pressure. The increased fluid pressure allows frictional failure in earthquakes at shear tractions far below those required when fluid pressure is hydrostatic. The frictional slip associated with earthquakes creates porosity in the fault zone. The cycle adjusts so that no net porosity is created (if the fault zone remains constant width). The fluid pressure within the fault zone reaches long-term dynamic equilibrium with the (hydrostatic) pressure in the country rock. One-dimensional models of this process lead to repeatable and predictable earthquake cycles. However, even modest complexity, such as two parallel fault splays with different pressure histories, will lead to complicated earthquake cycles. Two-dimensional calculations allowed computation of stress and fluid pressure as a function of depth but had complicated behavior with the unacceptable feature that numerical nodes failed one at a time rather than in large earthquakes. A possible way to remove this unphysical feature from the models would be to include a failure law in which the coefficient of friction increases at first with frictional slip, stabilizing the fault, and then decreases with further slip, destabilizing it.  相似文献   
337.
The Sørfjord has a long history of agriculture and industry, and environmental monitoring has been conducted for decades, comprising analyses of contaminants in mussel, fish and sediments. DDT was used as an insecticide in orchards surrounding the fjord between World War II and 1970. Since the early 1990s, elevated concentrations of DDT were found in mussels and fish. Unexpectedly, DDT-concentrations increased towards present day, despite the discontinuation of use. The highest concentrations in mussels (in 2006) corresponded to about two orders of magnitude higher than background. Analyses of sediment core sections also indicated increased input towards present day. Shifts in climatic parameters, as well as increased amounts of soil dissolved organic carbon following a decline in atmospheric sulphate deposition may have contributed to this phenomenon. We warrant the need for increased knowledge of the effects of alterations in variables acting regionally and globally on the disposition of contaminants in ecosystems.  相似文献   
338.
339.
Gu A  Gray F  Eastoe CJ  Norman LM  Duarte O  Long A 《Ground water》2008,46(3):502-509
Sulfate (S and O) isotopes used in conjunction with sulfate concentration provide a tracer for ground water contributions to base flow. They are particularly useful in areas where rock sources of contrasting S isotope character are juxtaposed, where water chemistry or H and O isotopes fail to distinguish water sources, and in arid areas where rain water contributions to base flow are minimal. Sonoita Creek basin in southern Arizona, where evaporite and igneous sources of sulfur are commonly juxtaposed, serves as an example. Base flow in Sonoita Creek is a mixture of three ground water sources: A, basin ground water with sulfate resembling that from Permian evaporite; B, ground water from the Patagonia Mountains; and C, ground water associated with Temporal Gulch. B and C contain sulfate like that of acid rock drainage in the region but differ in sulfate content. Source A contributes 50% to 70%, with the remainder equally divided between B and C during the base flow seasons. The proportion of B generally increases downstream. The proportion of A is greatest under drought conditions.  相似文献   
340.
In a BransDicke (BD) cosmological model, the energy density associated with some scalar field decreases as a 2[( o +1/2)/( o +1)] with the scalefactor a ( t ) of the universe, giving matter with an equation of state In this model, the universe could be closed but still have a non-relativistic matter density corresponding to its critical value, o =1. Different cosmological expressions, such as luminosity distance, angular diameter, number count and ratio of the redshift thicknessangular size, are determined in terms of the redshift for this model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号