首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18858篇
  免费   4038篇
  国内免费   5292篇
测绘学   2033篇
大气科学   3367篇
地球物理   4468篇
地质学   10780篇
海洋学   2359篇
天文学   637篇
综合类   2008篇
自然地理   2536篇
  2024年   108篇
  2023年   391篇
  2022年   1050篇
  2021年   1212篇
  2020年   999篇
  2019年   1143篇
  2018年   1314篇
  2017年   1110篇
  2016年   1208篇
  2015年   1260篇
  2014年   1340篇
  2013年   1413篇
  2012年   1525篇
  2011年   1528篇
  2010年   1485篇
  2009年   1334篇
  2008年   1195篇
  2007年   1083篇
  2006年   893篇
  2005年   779篇
  2004年   572篇
  2003年   490篇
  2002年   503篇
  2001年   487篇
  2000年   477篇
  1999年   556篇
  1998年   391篇
  1997年   389篇
  1996年   342篇
  1995年   286篇
  1994年   272篇
  1993年   234篇
  1992年   168篇
  1991年   121篇
  1990年   81篇
  1989年   94篇
  1988年   87篇
  1987年   56篇
  1986年   30篇
  1985年   34篇
  1984年   20篇
  1983年   14篇
  1982年   20篇
  1981年   15篇
  1980年   14篇
  1979年   16篇
  1978年   5篇
  1958年   19篇
  1957年   7篇
  1954年   5篇
排序方式: 共有10000条查询结果,搜索用时 265 毫秒
51.
杨红霞  刘崴  李冰 《岩矿测试》2008,27(6):405-408
建立了碱消解-高效液相色谱-电感耦合等离子体质谱联用系统测定生物样品中甲基汞(MeHg)与乙基汞(EtHg)的分析方法。为提高灵敏度,选用微流量的PFA雾化器,在优化的检测条件下,MeHg及EtHg检出限可达到0.036μg/L和0.03μg/L;线性范围达到4个数量级,两条工作曲线线性相关系数为1。对1.78μg/L MeHg、1.65μg/L EtHg的混合标准溶液重复测定7次,色谱峰面积的相对标准偏差(RSD)分别为1.79%和1.44%。对标准物质BCR 464(金枪鱼)的分析结果表明,测定值与标准值基本吻合,但略低于标准值;甲基汞和乙基汞的加标回收率分别为85.9%和84.5%。高效液相色谱与质谱联用技术的高灵敏度和低检出限能够满足生物样品中汞形态定量分析的要求。  相似文献   
52.
秦岭造山带的印支运动及印支期成矿作用   总被引:27,自引:10,他引:17  
秦岭碰撞造山经历了长期的板块构造的俯冲-碰撞的构造演化,于印支期最终完成对接拼合,形成了统一的中国大陆,并由此转入陆内变形。众多Au、Mo多金属矿床的同位素年龄资料表明,印支期是秦岭的重要成矿期,其成矿作用明显受到构造演化的控制,反映特定的地球动力学背景和作用过程。秦岭印支期成矿作用不仅是中国东部中生代成矿作用的先导和开始,奠定了中国东部中生代成矿大爆发的基础,而且为碰撞期和碰撞期后构造体制快速转换的研究提供了依据。重视秦岭以及中国印支期成矿作用的研究,对正确认识秦岭成矿带的区域成矿规律、造山带演化的深部动力学过程,建立符合中国和东亚实际的印支期成矿理论体系具有重要科学意义。  相似文献   
53.
The crustal structure of the Dabie orogen was reconstructed by a combined study of U–Pb ages, Hf and O isotope compositions of zircons from granitic gneiss from North Dabie, the largest lithotectonic unit in the orogen. The results were deciphered from metamorphic history to protolith origin with respect to continental subduction and exhumation. Zircon U–Pb dating provides consistent ages of 751 ± 7 Ma for protolith crystallization, and two group ages of 213 ± 4 to 245 ± 17 Ma and 126 ± 4 to 131 ± 36 Ma for regional metamorphism. Majority of zircon Hf isotope analyses displays negative εHf(t) values of − 5.1 to − 2.9 with crust Hf model ages of 1.84 to 1.99 Ga, indicating protolith origin from reworking of middle Paleoproterozoic crust. The remaining analyses exhibit positive εHf(t) values of 5.3 to 14.5 with mantle Hf model ages of 0.74 to 1.11 Ga, suggesting prompt reworking of Late Mesoproterozoic to Early Neoproterozoic juvenile crust. Zircon O isotope analyses yield δ18O values of − 3.26 to 2.79‰, indicating differential involvement of meteoric water in protolith magma by remelting of hydrothermally altered low δ18O rocks. North Dabie shares the same age of Neoproterozoic low δ18O protolith with Central Dabie experiencing the Triassic UHP metamorphism, but it was significantly reworked at Early Cretaceous in association with contemporaneous magma emplacement. The Rodinia breakup at about 750 Ma would lead to not only the reworking of juvenile crust in an active rift zone for bimodal protolith of Central Dabie, but also reworking of ancient crust in an arc-continent collision zone for the North Dabie protolith. The spatial difference in the metamorphic age (Triassic vs. Cretaceous) between the northern and southern parts of North Dabie suggests intra-crustal detachment during the continental subduction. Furthermore, the Dabie orogen would have a three-layer structure prior to the Early Cretaceous magmatism: Central Dabie in the upper, North Dabie in the middle, and the source region of Cretaceous magmas in the lower.  相似文献   
54.
Controlling of landsides safely and economically is a great challenge to mine operators because landslides are major geological problems especially in open-pit mines. In this paper, a case history at Panluo open-pit mine is presented in detail to share the experiences and lessons with mine operators. Panluo open-pit mine is located in the southwestern Fujian province of China. It is the largest open-pit iron mine in the Fujian province and was planned in 1965 and is in full operation from 1978. In July 1990, an earthquake of magnitude 5.3 in Taiwan Strait and big rainstorms impacted the mine slope, causing tension cracks and rather large-scale failures, and forming a U-shaped landslide. Total potential volume was estimated to be up to 1.0 × 106 m3. This directly threatened the mine production. In order to protect the mine production and the dwellers’ safety around, a dynamic comprehensive method was implemented including geotechnical investigations, in-situ testing and monitoring, stability analysis, and many mitigation and preventive measures. These measures slowed down the development and further occurrence of the landslide. The results showed that the landslides were still active, it was slowed with the control measures and moved rapidly with rainfall and mining down. However, no catastrophic accidents occurred and the pit mining was continued till it was closed at the elevation of 887 m in 2000. As a successful case of landslide control at an open-pit mine for 10 years, this paper reports the controlling measures in details. These experiences of landslide control may be beneficial to other similar mines for landslide control.  相似文献   
55.
Over a period of 4 years and 4 months, the geopurification installations at Dehesas de Guadix (Granada, Spain) were monitored to determine the impact on soil and groundwater of the controlled discharge of urban wastewater, and also to identify the best indicators of the entry of the recharged water into the aquifer. The installations are located in an area where the climate is Mediterranean sub-arid, with an average precipitation of less than 287 mm/year, and a rate of evapotranspiration that is almost three times greater. The system was controlled by determining the balance of majority nutrients and boron in the soil and in the groundwater, both at the points affected directly by the wastewater discharge and at others. The quantity of mass discharged was relatively large (COD 14,656 g/m2, NO3 85 g/m2, NO2 4 g/m2, NH4 2,425 g/m2, PO4 1,143 g/m2, K 1,531 g/m2, B 63 g/m2). It was observed that the elimination of nutrients within the soil (COD 97.5%, PO4 94.4%, K 59.17%, N total 18.8%, B 12.69%) was very efficient except for the nitrogen, which nevertheless did not reach the groundwater, as it was eliminated at deep levels of the unsaturated zone. Only 12.69% of the boron was removed, and appreciable, increasing amounts of this element did reach the groundwater. Unexpectedly, none of the majority nutrients behaved as a reliable indicator of the impact on groundwater; despite this, the boron and the bicarbonate did clearly reflect the arrival of the recharged water, and are proposed as the best indicators.  相似文献   
56.
The Qinghai–Tibet Highway and Railway (the Corridor) across the Qinghai–Tibet Plateau traverses 670 km of permafrost and seasonally frozen-ground in the interior of the Plateau, which is sensitive to climatic and anthropogenic environmental changes. The frozen-ground conditions for engineering geology along the Corridor is complicated by the variability in the near-surface lithology, and the mosaic presence of warm permafrost and talik in a periglacial environment. Differential settlement is the major frost-effect problem encountered over permafrost areas. The traditional classification of frozen ground based on the areal distribution of permafrost is too generalized for engineering purposes and a more refined classification is necessary for engineering design and construction. A proposed classification of 51 zones, sub-zones, and sections of frozen ground has been widely adopted for the design and construction of foundations in the portion of the Corridor studied. The mean annual ground temperature (MAGT), near-surface soil types and moisture content, and active faults and topography are most commonly the primary controlling factors in this classification. However, other factors, such as local microreliefs, drainage conditions, and snow and vegetation covers also exert important influences on the features of frozen ground. About 60% of the total length of the Corridor studied possesses reasonably good frozen-ground conditions, which do not need special mitigative measures for frost hazards. However, other sections, such as warm and ice-rich or -saturated permafrost, particularly in the sections in wetlands, ground improvement measures such as elevated land bridges and passive or proactive cooling techniques need to be applied to ensure the long-term stability of thermally unstable, thick permafrost subsoils, and/or refill with non-frost-susceptible soils. Due to the long-history of the construction and management of the Corridor by various government departments, adverse impacts of construction and operation on the permafrost environment have been resulted. It is recommended that an integrated, executable plan for the routing of major construction projects within this transportation corridor be established and long-term monitoring networks installed for evaluating and mitigating the impact from anthropogenic and climatic changes in frozen-ground conditions.  相似文献   
57.
58.
Hydrogen sulfide (H2S) is known to catalyze thermochemical sulfate reduction (TSR) by hydrocarbons (HC), but the reaction mechanism remains unclear. To understand the mechanism of this catalytic reaction, a series of isothermal gold-tube hydrous pyrolysis experiments were conducted at 330 °C for 24 h under a constant confining pressure of 24.1 MPa. The reactants used were saturated HC (sulfur-free) and CaSO4 in the presence of variable H2S partial pressures at three different pH conditions. The experimental results showed that the in-situ pH of the aqueous solution (herein, in-situ pH refers to the calculated pH of aqueous solution under the experimental conditions) can significantly affect the rate of the TSR reaction. A substantial increase in the TSR reaction rate was recorded with a decrease in the in-situ pH value of the aqueous solution involved. A positive correlation between the rate of TSR and the initial partial pressure of H2S occurred under acidic conditions (at pH ∼3-3.5). However, sulfate reduction at pH ∼5.0 was undetectable even at high initial H2S concentrations. To investigate whether the reaction of H2S(aq) and occurs at pH ∼3, an additional series of isothermal hydrous pyrolysis experiments was conducted with CaSO4 and variable H2S partial pressures in the absence of HC at the same experimental temperature and pressure conditions. CaSO4 reduction was not measurable in the absence of paraffin even with high H2S pressure and acidic conditions. These experimental observations indicate that the formation of organosulfur intermediates from H2S reacting with hydrocarbons may play a significant role in sulfate reduction under our experimental conditions rather than the formation of elemental sulfur from H2S reacting with sulfate as has been suggested previously (Toland W. G. (1960) Oxidation of organic compounds with aqueous sulphate. J. Am. Chem. Soc.82, 1911-1916).Quantification of labile organosulfur compounds (LSC), such as thiols and sulfides, was performed on the products of the reaction of H2S and HC from a series of gold-tube non-isothermal hydrous pyrolysis experiments conducted at about pH 3 from 300 to 370 °C and a 0.1-°C/h heating rate. Incorporation of sulfur into HC resulted in an appreciable amount of thiol and sulfide formation. The rate of LSC formation positively correlated with the initial H2S pressure. Thus, we propose that the LSC produced from H2S reaction with HC are most likely the reactive intermediates for H2S initiation of sulfate reduction. We further propose a three-step reaction scheme of sulfate reduction by HC under reservoir conditions, and discuss the geological implications of our experimental findings with regard to the effect of formation water and oil chemistry, in particular LSC content.  相似文献   
59.
Soil n-alkane δD vs. altitude gradients along Mount Gongga, China   总被引:1,自引:0,他引:1  
The altitude effect on the isotopic composition of precipitation and its application to paleoelevation reconstruction using authigenic or pedogenic minerals have been intensively studied. However, there are still no studies on variations in biomarker δD along altitude transects to investigate its potential as a paleoelevation indicator, although it has been observed that δD of higher plant lipid may record changes in precipitation δD (δDp). Here, we present δD values of higher plant-derived C27, C29, and C31n-alkanes from surface soil along the eastern slope of Mount Gongga, China with great changes in physical variables and vegetation over a range from 1000 to 4000 m above sea level. The weighted-mean δD values of these n-alkanes (δDwax) show significant linear correlations with predicted δDp values (R2 = 0.76) with an apparent isotopic enrichment (εwax-p) of −137 ± 9‰, indicating that soil δDwax values track overall δDp variation along the entire altitudinal transect. Leaf δDwax is also highly correlated with mountain altitude by a significant quadratic relationship (R2 = 0.80). Evapotranspiration is found declining with altitude, potentially lowering δDwax values at higher elevations. However, this evapotranspiration effect is believed to be largely compensated by the opposing effect of vegetation changes, resulting in less varied εwax-p values over the slope transect. This study therefore confirms the potential of using leaf δDwax to infer paleoelevations, and more generally, to infer the δD of precipitation.  相似文献   
60.
Formation of the Carbon-13 (13C) and deuterium (D) doubly-substituted methane isotopologues (13CH3D) in natural gases is studied utilizing both first-principle quantum mechanism molecular calculation and direct FTIR laboratorial measurements of specifically synthesized high isotope concentration methane gas. For 13CH3D, the symmetrically breathing mode A0 emerges as IR-detectable attributed to the molecular symmetry lowering to C3v from Td of the non-isotopic methane (CH4), along with a large vibrational frequency shift from ∼3000 to ∼2250 cm−1. Our studies also indicate that the concentration of 13CH3D is dependent on the environmental temperature through isotope exchanges among methane isotopologues; and the Gibbs’ Free Energy difference due to Quantum Mechanics Zero-Point vibrational motions has the major contribution to this temperature dependency. Potential geologic applications of the 13CH3D measurement to natural gas exploration and assessments are also discussed. In order to detect the 13CH3D concentration change of each 50 °C in the natural gas system, a 10−9 resolution is desirable. Such a measurement could provide important add-on information to distinguish natural gas origin and distribution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号